【題目】如圖,在平面直角坐標(biāo)系中,,,,,把一條長為2016個單位長度且沒有彈性的細(xì)線線的粗細(xì)忽略不計的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,點(diǎn)E、F分別在邊AB、BC上,△BEF與△GEF關(guān)于直線EF對稱,點(diǎn)B的對稱點(diǎn)是點(diǎn)G,且點(diǎn)G在邊AD上.若EG⊥AC,AB=6 ,則FG的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦了一次成語知識競賽,滿分10分,學(xué)生得分均為整數(shù),成績達(dá)到6分及6分以上為合格,達(dá)到9分或10分為優(yōu)秀.這次競賽中甲、乙兩組學(xué)生成績分布的折線統(tǒng)計圖和成績統(tǒng)計分析表如圖所示.
(1)求出下列成績統(tǒng)計分析表中的值;
(2)小英同學(xué)說:“這次競賽我得了7分,在我們小組中排名屬中游略上!”觀察上面表格判斷,小英是甲、乙哪個組的學(xué)生;
(3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組,但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們的成績要好于甲組.請你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程限期完成,甲隊單獨(dú)做正好按期完成,乙隊單獨(dú)做則要延期3天完成.現(xiàn)兩隊先合作2天,再由乙隊單獨(dú)做,也正好按期完成.如果設(shè)規(guī)定的期限為x天,那么根據(jù)題意可列出方程: =1; 2=1;③=1;④.其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化校園環(huán)境,爭創(chuàng)綠色學(xué)校,某縣教育局委托園林公司對A,B兩校進(jìn)行校園綠化,已知A校有如圖的陰影部分空地需鋪設(shè)草坪,B校有如圖的陰影部分空地需鋪設(shè)草坪,在甲、乙兩地分別有同種草皮3500米和2500米出售,且售價一樣,若園林公司向甲、乙兩地購買草皮,其路程和運(yùn)費(fèi)單價表如下:
路程、運(yùn)費(fèi)單價表
A校 | B校 | |||
路程千米 | 運(yùn)費(fèi)單價元 | 路程千米 | 運(yùn)費(fèi)單價元 | |
甲地 | 20 | 10 | ||
乙地 | 15 | 20 |
注:運(yùn)費(fèi)單價表示每平方米草皮運(yùn)送1千米所需的人民幣
求:分別求出圖1、圖2的陰影部分面積;
若園林公司將甲地的草皮全部運(yùn)往A校,請你求出園林公司運(yùn)送草皮去A、B兩校的總運(yùn)費(fèi);
請你給出一種運(yùn)送方案,使得園林公司支付出送草皮的總運(yùn)費(fèi)不超過15000元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB=4,點(diǎn)E、F分別是BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)當(dāng)四邊形AECF為菱形時,求出該菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是( )
A.π
B.
C.3+π
D.8﹣π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上的一點(diǎn),E為AD的中點(diǎn),過A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com