【題目】如圖,反比例函數(shù)yx0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別交AB、BC于點(diǎn)DE,連結(jié)DE.若四邊形ODBE的面積為9,則ODE的面積是________

【答案】

【解析】

設(shè)B的坐標(biāo)為(2a,2b,E點(diǎn)坐標(biāo)為(x,2b,D點(diǎn)坐標(biāo)為(2a,y,因?yàn)?/span>DE、M在反比例函數(shù)圖象上,則ab=k,2bx=k, 2ay=k, 根據(jù)四邊形ODBE的面積列式,求得k值,再由2bx×2ay=4abxy=k2=9, 求得xy的值,然后根據(jù)所求的結(jié)果求出BED的面積,則ODE的面積就是四邊形ODBE的面積和BED的面積之差.

解:設(shè)B的坐標(biāo)為(2a,2b, M點(diǎn)坐標(biāo)為(a,b,

MAC上,

ab=kk>0,

設(shè)E點(diǎn)坐標(biāo)為(x,2b),D點(diǎn)坐標(biāo)為(2a,y,

2bx=k, 2ay=k,

S四邊形ODBE=2a×2b-×(2bx+2ay)=9,

4k- (k+k)=9,

解得k=3,

2bx×2ay=4abxy=k2=9,

4abxy=9,

解得:xy=,

SBED=BE×BD=

,

SODE =S四邊形ODBE -SBED=9-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,以為直徑的于點(diǎn),交于點(diǎn),過點(diǎn)于點(diǎn),交的延長(zhǎng)線于點(diǎn).

(1)求證:的切線;

(2)已知,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,,平分,,那么的長(zhǎng)是 ____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正三角形紙片剪成四個(gè)小正三角形,得到個(gè)小正三角形,稱為第一次操作; 然后,將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到個(gè)小正三角形,稱為第二次操作;再將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到個(gè)小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到個(gè)小正三角形,則需要操作的次數(shù)是__________次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如:如圖①,若點(diǎn)在數(shù)軸上分別對(duì)應(yīng)的數(shù)為,則的長(zhǎng)度可以表示為

請(qǐng)你用以上知識(shí)解決問題:

如圖②,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向左移動(dòng)個(gè)單位長(zhǎng)度到達(dá)點(diǎn),再向右移動(dòng)個(gè)單位長(zhǎng)度到達(dá)點(diǎn),然后向右移動(dòng)個(gè)單位長(zhǎng)度到達(dá)點(diǎn).

請(qǐng)你在圖②的數(shù)軸上表示出三點(diǎn)的位置.

若點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度向左移動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒個(gè)單位長(zhǎng)度和個(gè)單位長(zhǎng)度的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為秒.

①當(dāng)時(shí),求的長(zhǎng)度;

②試探究:在移動(dòng)過程中,的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的對(duì)角線ACBD交于點(diǎn)O,給出下列四個(gè)論斷:

OA=OC,AB=CD,③∠BAD=DCB,ADBC.

請(qǐng)你從中選擇兩個(gè)論斷作為條件,以四邊形ABCD為平行四邊形作為結(jié)論,完成下列各題:

(1)構(gòu)造一個(gè)真命題,畫圖并給出證明;

(2)構(gòu)造一個(gè)假命題,舉反例加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測(cè)得∠1=∠2

B. 如圖2,展開后測(cè)得∠1=∠2∠3=∠4

C. 如圖3,測(cè)得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與軸交于點(diǎn),一次函數(shù)的圖像過點(diǎn),且與軸及的圖像分別交于點(diǎn),點(diǎn)坐標(biāo)為.

(1)求n的值及一次函數(shù)的解析式.

(2)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),AOB=110°,BOC=α, OC為邊作等邊三角形OCD,連接AD.

1當(dāng)α=150°時(shí),試判斷AOD的形狀,并說明理由;

2探究:當(dāng)a為多少度時(shí),AOD是等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案