【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點(diǎn)E.在△ABC外取一點(diǎn)F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點(diǎn)M,使BM=2DE,連接ME.試判斷ME與BC是否垂直,并說明理由.
【答案】
(1)證明:∵∠BAC=90°,AF⊥AE,
∴∠1+∠EAC=90°,∠2+∠EAC=90°
∴∠1=∠2,
又∵AB=AC,
∴∠B=∠ACB=45°,
∵FC⊥BC,
∴∠FCA=90°﹣∠ACB=90°﹣45°=45°,
∴∠B=∠FCA,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴BE=CF;
(2)解:如圖,過點(diǎn)E作EH⊥AB于H,則△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC.
【解析】(1)根據(jù)角的和差,求出∠1=∠2,∠B=∠FCA,根據(jù)全等三角形的判定方法ASA,得到△ABE≌△ACF,得到BE=CF;(2)根據(jù)題意得到△BEH是等腰直角三角形,由已知得到DE=BH=HE,得到△HEM是等腰直角三角形,得到ME⊥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知:Rt△EFP和矩形ABCD如圖①擺放(點(diǎn)P與點(diǎn)B重合),點(diǎn)F,B(P),C在同一條直線上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°。如圖②,△EFP從圖①的位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s;EP與AB交于點(diǎn)G.同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s。過Q作QM⊥BD,垂足為H,交AD于M,連接AF,PQ,當(dāng)點(diǎn)Q停止運(yùn)動(dòng)時(shí),△EFP也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問題:
(1)當(dāng) t 為何值時(shí),PQ∥BD?
(2)設(shè)五邊形 AFPQM 的面積為 y(cm2),求 y 與 t 之間的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻 t,使?若存在,求出 t 的值;若不存在,請說明理由;
(4)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻 t,使點(diǎn)M在PG的垂直平分線上?若存在,求出 t 的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,計(jì)算結(jié)果正確的是( 。
A.a2a3=a6B.(a2)3=a5
C.(a2b)2=a2b2D.(π﹣1)0=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, ,平分,點(diǎn)是延長線上一點(diǎn),且.
(1)證明:;
(2)若與相交于點(diǎn),,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件還可以盈利50元,那么這款大衣每件的標(biāo)價(jià)是元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在x軸的下方,且到x軸的距離為5,到y軸的距離為3,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣3(x﹣1)2+3的頂點(diǎn)坐標(biāo)是( 。
A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎在畫一次函數(shù)y=ax+b(a,b為常數(shù),且a≠0)的圖象時(shí),求得x與y的部分對(duì)應(yīng)值如表,則方程ax+b=0的解是_____.
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 6 | 4 | 2 | 0 | ﹣2 | ﹣4 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題“垂直于同一條直線的兩條直線互相平行”的條件是( )
A. 如果兩條直線垂直于同一條直線 B. 兩條直線互相平行
C. 兩條直線互相垂直 D. 兩條直線垂直于同一條直線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com