【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GECD,GFBCAD=1500m,小敏行走的路線為BAGE,小聰行走的路線為BADEF,若小敏行走的路程為3100m,則小聰行走的路程為( 。m

A.3100B.4600C.3000D.3600

【答案】B

【解析】

連接CG,由正方形的對稱性,易知AG=CG,由正方形的對角線互相平分一組對角,GEDC,易得DE=GE.在矩形GECF中,EF=CG.要計算小聰走的路程,只要得到小聰比小敏多走了多少就行.

連接GC,

∵四邊形ABCD為正方形,

所以AD=DC,∠ADB=∠CDB=45°,

∵∠CDB=45°,GEDC,

∴△DEG是等腰直角三角形,

DE=GE

在△AGD和△GDC中,

,

∴△AGD≌△GDCSAS

AG=CG,

在矩形GECF中,EF=CG,

EF=AG

BA+AD+DE+EF-BA-AG-GE,

=AD=1500m

∵小敏共走了3100m

∴小聰行走的路程為3100+1500=4600m),

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用尺規(guī)在一個平行四邊形內(nèi)作菱形ABCD,下列作法中錯誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線l:y=(x﹣h)2﹣4(h為常數(shù))

(1)如圖1,當(dāng)拋物線l恰好經(jīng)過點P(1,﹣4)時,lx軸從左到右的交點為A、B,與y軸交于點C.

①求l的解析式,并寫出l的對稱軸及頂點坐標(biāo).

②在l上是否存在點D,使SABD=SABC , 若存在,請求出D點坐標(biāo),若不存在,請說明理由.

③點Ml上任意一點,過點MME垂直y軸于點E,交直線BC于點D,過點Dx軸的垂線,垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點M的坐標(biāo).

(2)設(shè)l與雙曲線y=有個交點橫坐標(biāo)為x0,且滿足3≤x0≤5,通過l位置隨h變化的過程,直接寫出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明玩抽卡片和旋轉(zhuǎn)盤游戲,有兩張正面分別標(biāo)有數(shù)字1,2的不透明卡片,背面完全相同;轉(zhuǎn)盤被平均分成3個相等的扇形,并分別標(biāo)有數(shù)字﹣1,3,4(如圖所示),小明把卡片背面朝上洗勻后從中隨機抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,記下指針?biāo)趨^(qū)域內(nèi)的數(shù)字(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域內(nèi)為止).

1)請用列表法或畫樹形圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;

2)求出兩個數(shù)字之積為負數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,菱形ABCD中,AB=5cm,動點P從點B出發(fā),沿折線BC﹣CD﹣DA運動到點A停止,動點Q從點A出發(fā),沿線段AB運動到點B停止,它們運動的速度相同,設(shè)點P出發(fā)xs時,△BPQ的面積為ycm2 , 已知yx之間的函數(shù)關(guān)系如圖②所示,其中OM,MN為線段,曲線NK為拋物線的一部分,請根據(jù)圖中的信息,解答下列問題:

(1)當(dāng)1<x<2時,△BPQ的面積________(填不變”);

(2)分別求出線段OM,曲線NK所對應(yīng)的函數(shù)表達式;

(3)當(dāng)x為何值時,△BPQ的面積是5cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三名大學(xué)生競選系學(xué)生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進行了統(tǒng)計,如表一和圖一:

(1)請將表一和圖一中的空缺部分補充完整.

(2)競選的最后一個程序是由本系的300名學(xué)生進行投票,三位候選人的得票情況如圖二(沒有棄權(quán)票,每名學(xué)生只能推薦一個),請計算每人的得票數(shù).

(3)若每票計1分,系里將筆試、口試、得票三項測試得分按的比例確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如表:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離(千米)與時間(分鐘)的函數(shù)關(guān)系用圖3表示,其中:11:40時甲地交叉潮的潮頭離乙地12千米記為點,點坐標(biāo)為,曲線可用二次函數(shù),是常數(shù))刻畫.

(1)求的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,的平分線,的延長線.

1)當(dāng)時,求的度數(shù);

2)當(dāng)時,求的度數(shù);

3)通過(1)(2)的計算,直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案