如圖:在△EBD中,EB=ED,點(diǎn)C在BD上,CE=CD,BE⊥CE,A是CE延長(zhǎng)線上一點(diǎn),EA=EC.試判斷△ABC的形狀,并證明你的結(jié)論.
是等邊三角形
【解析】
試題分析:因?yàn)镋B=ED,CE=CD,所以可求得∠ECB=2∠EBC,又因?yàn)锽E⊥CE,則∠ECB=60°,AB=BC,故△ABC是等邊三角形.
△ABC是等邊三角形.
∵CE=CD,
∴∠D=∠DEC,
∴∠ECB=∠D+∠DEC=2∠D.
∵BE=DE,
∴∠EBC=∠D.
∴∠ECB=2∠EBC.
又∵BE⊥CE,
∴∠ECB=60°.
∵BE⊥CE,AE=CE,
∴AB=BC.
∴△ABC是等邊三角形.
考點(diǎn):本題考查了等邊三角形的判定
點(diǎn)評(píng):解答本題的關(guān)鍵是掌握有一個(gè)角等于60°的等腰三角形是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com