【題目】完成下面的推理過(guò)程,并在括號(hào)內(nèi)填上依據(jù).
如圖,E為DF上的一點(diǎn),B為AC上的一點(diǎn),∠1=∠2,∠C=∠D,求證:AC∥DF
證明:∵∠1=∠2()
∠1=∠3( 對(duì)角線相等)
∴∠2=∠3()
∴∥()
∴∠C=∠ABD()
又∵∠C=∠D(已知)
∴∠D=∠ABD()
∴AC∥DF()
【答案】已知;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行
【解析】證明:∵∠1=∠2(已知)
∠1=∠3(對(duì)角線相等)
∴∠2=∠3(等量代換)
∴BD∥CE(同位角相等,兩直線平行)
∴∠C=∠ABD(兩直線平行,同位角相等)
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代換)
∴AC∥DF(內(nèi)錯(cuò)角相等,兩直線平行).
所以答案是:已知,等量代換,BD,CE,同位角相等,兩直線平行,兩直線平行,同位角相等,等量代換,內(nèi)錯(cuò)角相等,兩直線平行.
【考點(diǎn)精析】利用平行線的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E為矩形ABCD中AD邊中點(diǎn),將矩形ABCD沿CE折疊,使點(diǎn)D落在矩形內(nèi)部的點(diǎn)F處,延長(zhǎng)CF交AB于點(diǎn)G,連接AF.
(1)求證:AF∥CE;
(2)探究線段AF,EF,EC之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若BC=6,BG=8,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P(-2,a), Q(-2,a-5),若△POQ是直角三角形,則點(diǎn)P的坐標(biāo)不可能為( )
A. (-2,4 )B. (-2, 0)C. (-2, 5)D. (-2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與y軸在正半軸、x軸正半軸分別交A、B兩點(diǎn),M在BA的延長(zhǎng)線上,PA平分∠MAO,PB平分∠ABO,則∠P= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將n個(gè)邊長(zhǎng)都為1cm的正方形按如圖所示的方法擺放,點(diǎn)A1 , A2 , …,An分別是正方形對(duì)角線的交點(diǎn),則n個(gè)正方形重疊形成的重疊部分的面積和為( )
A.cm2
B.cm2
C.cm2
D.( )ncm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班從三名男生(含小強(qiáng))和五名女生中,選四名學(xué)生參加學(xué)校舉行的“中華古詩(shī)文朗誦大賽”,規(guī)定女生選n名,若男生小強(qiáng)參加是必然事件,則n=__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com