【題目】如圖,四邊形為菱形,點為對角線上的一個動點,連接并延長交射線于點,連接

求證:

是否存在這樣一個菱形,當時,剛好?若存在,求出的度數(shù);若不存在,請說明理由;

,且當為等腰三角形時,求的度數(shù).

【答案】(1)見解析;(2);(3)

【解析】

試題首先證明△DCE≌△BCE∠EDC∠EBC,根據(jù)DC∥AB∠EDC∠AFD,從而說明結(jié)論;根據(jù)DE=EC得出∠EDC∠ECD,設∠EDC∠ECD∠CBE,則∠CBF2x°,根據(jù)BE⊥AF得出x的值,然后計算;當FAB延長線上時,∠EFB為鈍角,只能是BE=BF,通過三角形內(nèi)角和求出未知數(shù)的值;當F在線段AB上時,∠EFB為鈍角只能是FE=FB,然后進行計算.

試題解析:(1∵△DCE≌△BCE∠EDC∠EBC DC∥AB∠EDC∠AFD

∴∠AFD∠EBC

2∵DE=EC ∴∠EDC∠ECD

∠EDC∠ECD∠CBE,則∠CBF2x°

BE⊥AF2x+ x90° x30°

∴∠DAB60°

3)分兩種情況:

FAB延長線上時,∵∠EFB為鈍角

只能是BE=BF,設∠BEF∠BFE

可通過三角形內(nèi)角形為180°90+ x+ x+ x180,x30

∴∠EFB30°

F在線段AB上時,∵∠EFB為鈍角

只能是FE=FB,設∠BEF∠EBF,則有 ∠AFD= 2x°

可證得∠AFD∠DCE∠CBE x+ 2x90, x30 ∴∠EFB120°

綜上:∴∠EFB30°120°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分7分) 已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BCAC=OB

(1)求證:AB是⊙O的切線;

(2)若∠ACD=45°,OC=2,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在Rt△ABC中,∠BAC=90°,AD⊥BC于點D,點OAC邊上的一點,連接BOAD于點F,OE⊥OBBC邊于點E.

(1)試說明:△ABF∽△COE.

(2)如圖(2),當OAC邊的中點,且時,求的值.

(3)OAC邊的中點,時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,,.點出發(fā)沿向點勻速運動,同時點出發(fā)沿向點勻速運動,它們的速度相同,點上,,且點在點的下方,當點到達點時,點,也停止運動,連接,設.解答下列問題:

如圖,當為何值時,為直角三角形;

如圖,把沿翻折,使點落在點.

為何值時,四邊形為菱形?并求出菱形的面積;

如圖,分別取,的中點,,在整個運動過程中,則線段掃過的區(qū)域的形狀為________,其面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,對角線、相交于點,過點作一條直線分別交、的延長線于點,連接、

求證:四邊形是平行四邊形;

,垂足為,,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的實線部分是由 RtABC 經(jīng)過兩次折疊得到的,首先將 RtABC 沿 BD 折疊,使點 C落在斜邊上的點 C′處,再沿 DE 折疊,使點 A 落在 DC′的延長線上的點 A′處.若圖中∠C=90°,DE=3cm,BD=4cm,則 DC′的長為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=7cm,ACABBDAB 垂足分別為 A、B,AC=5cm.點P 在線段 AB 上以 2cm/s 的速度由點 A 向點B 運動,同時,點 Q 在射線 BD 上運動.它們運 動的時間為 ts)(當點 P 運動結(jié)束時,點 Q 運動隨之結(jié)束).

1)若點 Q 的運動速度與點 P 的運動速度相等,當 t=1 時,ACP BPQ 是否全等, 并判斷此時線段 PC 和線段 PQ 的位置關系,請分別說明理由;

2)如圖(2),若ACABBDAB改為CAB=DBA=60°”,點 Q 的運動速 度為 x cm/s,其他條件不變,當點 P、Q 運動到某處時,有ACP BPQ 全等,求出相應的 x、t 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABCAB=AD=DC。

(1)若∠C=35°,求∠B的度數(shù)。

(2)若∠C=2BAD,求∠BAD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB130°,AB、AC的垂直平分線分別交BC于點M、N,則∠MAN等于( 。

A.60°B.70°C.80°D.90°

查看答案和解析>>

同步練習冊答案