如圖,等腰三角形ABC中,AB=AC,P點在BC邊上的高AD上,且數(shù)學(xué)公式,BP的延長線交AC于E,若S△ABC=10,則S△ABE=________;S△DEC=________.

2    4
分析:如果把△ABE與△ABC看作同高的兩個三角形,那么它們的面積之比等于底之比,即等于AE:AC.所以為了求出△ABE的面積,由于已知S△ABC=10,只需求出AE:AC即可.為此,取EC中點F,連接DF.先由等腰三角形三線合一的性質(zhì)得出D為BC中點,又F為EC中點,根據(jù)三角形中位線定理證出DF∥BE,再由平行線分線段成比例定理求出AE:EF,進(jìn)而得出AE:AC;根據(jù)S△BEC=S△ABC-S△ABE,先求出S△BEC,再根據(jù)三角形的中線將三角形的面積二等分,得出S△DEC
解答:取EC中點F,連接DF.
∵AB=AC,AD為BC邊上的高,
∴D為BC中點.
∵F為EC中點,
∴DF∥BE,則DF∥PE,
=,
=
==,
∴S△ABE=S△ABC=×10=2;
∵S△BEC=S△ABC-S△ABE=10-2=8,
又∵D為BC中點,
∴S△DEC=S△BEC=×8=4.
故答案為2;4.
點評:本題主要考查平行線分線段成比例定理,等腰三角形的性質(zhì),中位線定理及三角形面積的計算,綜合性較強(qiáng),難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,則∠DCB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰三角形ABC的頂角為120°,底邊BC=
3
2
,則腰長AB為( 。
A、
2
2
B、
3
2
C、
1
2
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時,應(yīng)符合下面四個條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個等腰三角形相似時,它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當(dāng)α=60°時,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因為此時正三角形的正度是1!
解答下列問題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說法合理嗎?為什么?
(2)對你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰三角形ABC中,AB=AC,AH垂直BC,點E是AH上一點,延長AH至點F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰三角形ABC(AB=AC)的底角為50°,繞點A逆時針旋轉(zhuǎn)一定角度后得△AB′C′,那么△AB′C′繞點A旋轉(zhuǎn)
40
40
度后AC⊥B′C′.

查看答案和解析>>

同步練習(xí)冊答案