如圖,在正方形ABCD中,過B作一直線與CD相交于點E,過A作AF垂直BE于點F,過C作CG垂直BE于點G,在FA上截取FH=FB,再過H作HP垂直AF交AB于P.若CG=3.則△CGE與四邊形BFHP的面積之和為________.

9
分析:由ABCD為正方形,根據(jù)正方形的性質(zhì)得到AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,又根據(jù)CG與BE垂直得到∠BCG+∠CBG=90°,根據(jù)同角的余角相等得到一對角相等,又根據(jù)一對直角相等,利用“AAS”即可得到三角形BCG與三角形FBA全等,根據(jù)全等三角形的對應邊相等得到AF與BG相等,又因為FH=FB,從而得到AH=FG,然后由垂直得到一對直角相等,加上一個公共角,得到三角形APH與三角形ABF相似,根據(jù)相似得比例,設AH=FG=x,用x表示出PH,由四邊形PHFB一組對邊平行,另一組對邊不平行得到此四邊形為梯形,根據(jù)梯形的面積公式,由上底PH,下底為BF=3,高FH=3,表示出梯形的面積;然后在三角形BCG與三角形ECG中,根據(jù)同角的余角相等,再加上一對直角得到兩三角形相似,根據(jù)相似得比例,用含x的式子表示出GE,由CG=3,利用表示出的GE,利用三角形的面積公式表示出直角三角形CGE的面積,把表示出的兩面積相加,化簡即可得到值.
解答:∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,
又CG⊥BE,即∠BGC=90°,
∴∠BCG+∠CBG=90°,
∴∠ABF=∠BCG,
又AF⊥BG,
∴∠AFB=∠BGC=90°,
∴△ABF≌△BCG,
∴AF=BG,BF=CG=FH=3,
又∵FH=BF,
∴AH=FG,設AH=FG=x,
∵PH⊥AF,BF⊥AF,
∴∠AHP=∠AFB=90°,又∠PAH為公共角,
∴△APH∽△ABF,
=,即PH=,
∵FH∥BF,BP不平行FH,
∴四邊形BFHP為梯形,其面積為=+;
又∵∠BCG+∠ECG=90°,∠ECG+∠BEC=90°,
∴∠BCG=∠BEC,又∠BGC=∠CGE=90°,
∴△BCG∽△CEG,
=,即GE=,故Rt△CGE的面積為×3×,
則△CGE與四邊形BFHP的面積之和為++=+=9.
故答案為:9
點評:此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及相似三角形的判定與性質(zhì),此題的綜合性比較強,常常綜合了多個考點和數(shù)學思想方法,因而解答時需“分解題意”,即將一個大問題分解為一個一個的小問題,從而解決問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案