分析 (1)利用角之間的等量代換得出∠GAF=∠FAE,再利用SAS得出△GAF≌△EAF,得出答案;
(2)作出∠4=∠1,利用已知得出∠GAF=∠FAE,再證明△AGF≌△AEF,即可得出答案;
(3)根據(jù)角之間的關(guān)系,只要滿足∠B+∠D=180°時,就可以得出三角形全等,即可得出答案.
解答 解:(1)將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AD與AB重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G、B、F在同一條直線上.
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠EAF,
又∵AG=AE,AF=AF,
∴△GAF≌△EAF(SAS),
∴GF=EF,
故DE+BF=EF;
故答案為:EAF,△EAF,GF;
(2)EF=DE+BF,理由如下:
如圖②,延長CF,作∠4=∠1,
∵將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=$\frac{1}{2}$∠DAB,
∴∠1+∠2=∠3+∠5,
∠2+∠3=∠1+∠5,
∵∠4=∠1,
∴∠2+∠3=∠4+∠5,
∴∠GAF=∠FAE,
在△AGB和△AED中,
$\left\{\begin{array}{l}{∠4=∠1}\\{AB=AD}\\{∠ABG=∠ADE}\end{array}\right.$,
∴△AGB≌△AED(ASA),
∴AG=AE,BG=DE,
在△AGF和△AEF中,
$\left\{\begin{array}{l}{AG=AE}\\{∠GAF=∠EAF}\\{AF=AF}\end{array}\right.$,
∴△AGF≌△AEF(SAS),
∴GF=EF,
∴DE+BF=EF;
(3)當(dāng)∠B與∠D滿足∠B+∠D=180°時,可使得DE+BF=EF.
如圖③,延長CF,作∠2=∠1,
∵∠ABC+∠D=180°,∠ABC+∠ABG=180°,
∴∠D=∠ABG,
在△AGB和△AED中,
$\left\{\begin{array}{l}{∠2=∠1}\\{AB=AD}\\{∠D=∠ABG}\end{array}\right.$,
∴△AGB≌△AED(ASA),
∴BG=DE,AG=AE,
∵∠EAF=$\frac{1}{2}$∠DAB,
∴∠EAF=∠GAF,
在△AGF和△AEF中,
$\left\{\begin{array}{l}{AG=AE}\\{∠GAF=∠EAF}\\{AF=AF}\end{array}\right.$,
∴△AGF≌△AEF(SAS),
∴GF=EF,
DE+BF=EF.
點評 此題是四邊形綜合題,主要考查了全等三角形的判定與性質(zhì),折疊的性質(zhì)和旋轉(zhuǎn)變換的性質(zhì)等知識,根據(jù)題意作出與已知相等的角,利用三角形全等是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com