【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=ax+b的圖象分別與x,y軸交于點(diǎn)B,A,與反比例函數(shù)y2= 的圖象交于點(diǎn)C,D,CE⊥x軸于點(diǎn)E,tan∠ABO= ,OB=4,OE=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出當(dāng)x<0且y1<y2時(shí)x的取值范圍.

【答案】
(1)解:∵OB=4,

∴B(4,0).

∵tan∠ABO= =

∴OA=2,

∴A(0,2).

將點(diǎn)A(0,2)、B(4,0)代入y1=ax+b,

,解得: ,

∴一次函數(shù)的解析式為y1=﹣ x+2.

∵OB=4,OE=2,

∴BE=2+4=6.

∵CE⊥x軸于點(diǎn)E,

∴tan∠ABO= = ,

∴CE=3,

∴點(diǎn)C的坐標(biāo)為(﹣2,3).

將點(diǎn)C(﹣2,3)代入y2= ,

3= ,解得:m=﹣6,

∴反比例函數(shù)的解析式為y2=﹣


(2)觀察函數(shù)圖象可知,當(dāng)﹣2<x<0時(shí),反比例函數(shù)圖象在一次函數(shù)圖象上方,

∴當(dāng)x<0且y1<y2時(shí)x的取值范圍為﹣2<x<0.


【解析】(1)由OB的長度可得出點(diǎn)B的坐標(biāo),結(jié)合tan∠ABO= 可得出OA的長度,進(jìn)而得出點(diǎn)A的坐標(biāo),根據(jù)點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法,即可求出一次函數(shù)的解析式;由OB、OE的長度可得出BE的長度,結(jié)合tan∠ABO= 可得出CE的長度,進(jìn)而得出點(diǎn)C的坐標(biāo),根據(jù)點(diǎn)C的坐標(biāo)利用待定系數(shù)法,即可求出反比例函數(shù)的解析式;(2)觀察函數(shù)圖象的上下位置關(guān)系,即可得出當(dāng)x<0且y1<y2時(shí)x的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的解直角三角形,需要了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點(diǎn)B,OA=6,sinA= ,弦BC∥OA.
(1)求AB的長;
(2)求四邊形AOCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b分別與x軸、y軸交于A、B兩點(diǎn),過點(diǎn)B的拋物線y=﹣ (x﹣2)2+m的頂點(diǎn)P在這條直線上,以AB為邊向下方做正方形ABCD.

(1)當(dāng)m=2時(shí),k= , b=;當(dāng)m=﹣1時(shí),k= , b=;
(2)根據(jù)(1)中的結(jié)果,用含m的代數(shù)式分別表示k與b,并證明你的結(jié)論;
(3)當(dāng)正方形ABCD的頂點(diǎn)C落在拋物線的對(duì)稱軸上時(shí),求對(duì)應(yīng)的拋物線的函數(shù)關(guān)系式;
(4)當(dāng)正方形ABCD的頂點(diǎn)D落在拋物線上時(shí),直接寫出對(duì)應(yīng)的直線y=kx+b的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)襄陽新聞報(bào)道2016年3月至2016年10月,襄陽閘口二路“大蝦一條街”共銷售大蝦6000余噸.2017年潛江養(yǎng)蝦專業(yè)戶張小花抓住商機(jī),將自己養(yǎng)殖的大蝦銷往襄陽.計(jì)算了養(yǎng)殖成本以及運(yùn)費(fèi)等諸多因素,他發(fā)現(xiàn)大蝦的成本價(jià)為20元/公斤.經(jīng)過市場(chǎng)調(diào)查,一周的銷售量y公斤與銷售單價(jià)x(x≥30)元/公斤的關(guān)系如下表:

銷售單價(jià)x元/公斤

30

35

40

45

銷售量y公斤

500

450

400

350


(1)直接寫出y與x的函數(shù)關(guān)系式;
(2)若張小花一周的銷售利潤為W元,請(qǐng)求出W與x的函數(shù)關(guān)系式,并確定當(dāng)銷售單價(jià)在什么范圍內(nèi)變化時(shí),一周的銷售利潤隨著銷售單價(jià)的增大而增大?
(3)隨著賺的錢越來越多,張小花決定回饋社會(huì)將一周的銷售利潤全部捐給襄陽市福利院.若一周張小花的總成本不超過4000元,請(qǐng)求出張小花最大捐款數(shù)額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,E,F(xiàn)分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC的度數(shù)為(
A.55°
B.50°
C.45°
D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)P在運(yùn)動(dòng)過程中速度不變,則以點(diǎn)B為圓心,線段BP長為半徑的圓的面積S與點(diǎn)P的運(yùn)動(dòng)時(shí)間t的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D在BC邊上,且BD=BC,過點(diǎn)B作CD的垂線交AC于點(diǎn)O,以O(shè)為圓心,OC為半徑畫圓.
(1)求證:AB是⊙O的切線;
(2)若AB=10,AD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的頂點(diǎn)A(﹣ ,0),∠DAB=60°,若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D→A→B→…的路徑,在菱形的邊上以每秒0.5個(gè)單位長度的速度移動(dòng),則第2017秒時(shí),點(diǎn)P的坐標(biāo)為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y= 的圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出不等式kx+b﹣ <0的解集;
(3)P是x軸上的一點(diǎn),且滿足△APB的面積是9,寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案