如圖,在平面直角坐標(biāo)系中,點A(8,0),B點在第一象限,BO=BA=5,若M、N是OB和OA中點,
(1)直線MN的解析式為______.
(2)△ABN面積=______.
(3)將圖(1)中的△NMO繞點O旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,△ABN面積是否存在最大值、最小值?若不存在,請說明理由;若存在請在備用圖中畫出相應(yīng)位置的圖形,并直接寫出最大值、最小值;
(4)將圖(1)中的△NMO繞點O旋轉(zhuǎn),當(dāng)點N在第二象限時,如圖(2),設(shè)N(x,y),△ABN的面積為S,求S與x之間的函數(shù)關(guān)系式.

解:(1)作MC⊥OA于C
∵A(8,0)
∴OA=8
∵M(jìn)、N是OA、OB的中點
∴MN是△AOB的中位線,ON=AN=4,OM=BM=
∴MN=AB=,N(4,0)
∴OM=MN
∴OC=NC=2,在Rt△OCM中,由勾股定理得,
MC=
∴M(2,
設(shè):y=kx+b,由題意得
解得:

∴MN的解析式為:y=-x+3

(2)∵,且MC=
∴BN=3
∴S△ABN==6

(3)當(dāng)N點到達(dá)G點時△ANB的面積最小為:
當(dāng)N點到達(dá)H點時△ANB的面積最大為:

(4)過點N作NF⊥OA于E交AB的延長線于點F,BD⊥OA于A
∴BD=3,OD=AD=4
∵N(x,y),點N在第二象限
∴NE=y,EO=-x
∴AE=8-x
∵NF⊥OA,BD⊥OA
∴ADB△∽△AEF


∴EF=
在Rt△NEO中由勾股定理得:
y2+(-x)2=42

NF=
∵S△ABN=S△AFN-S△NBF
∴S△ABN=
∴S=
分析:(1)要求MN的解析式,要想法求出點M、N的坐標(biāo),N是中點,很容易求出N點的坐標(biāo),作MC⊥OA,通過解直角三角形可以求出M的坐標(biāo),從而求出直線MN的解析式.
(2)連接MN,N是中點,OB=AB,說明△AOB是等腰三角形,根據(jù)等腰三角形的性質(zhì)可以知道BN⊥OA,且利用勾股定理可以求出BN的長度,從而求出三角形ABN的面積.
(3)在旋轉(zhuǎn)的過程中,當(dāng)N點落在線段OB上時,△ABN的面積最小,當(dāng)N點落在線段OB的反向延長線上時,△ABN的面積最大,可以根據(jù)面積公式求出其值.
(4)過點N作OA的垂線交OA于E,交AB的延長線于點F,求出EF、ED、AE的長度,利用S△ANF減去S△BNF就是△ABN的面積.
點評:本題是一道一次函數(shù)的綜合試題,考查了利用求點的坐標(biāo)求函數(shù)的解析式,三角形的面積,旋轉(zhuǎn)過程中的面積最大值和最小值.是一道綜合性較強(qiáng)的試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案