【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以一定的速度沿同一路線行走. 設甲乙兩人相距(米),甲行走的時間為(分),為的函數(shù),其函數(shù)圖像的一部分如圖所示.
(1)求甲、乙兩人行走的速度;
(2)當甲出發(fā)多少分鐘時,甲、乙兩人相距390米?
【答案】(1)甲行走的速度為30米/分,乙行走的速度為50米/分;(2)甲行走32分鐘或37分鐘時,甲、乙兩人相距390米.
【解析】試題分析:(1)由圖象可知時, 米,根據(jù)速度=路程÷時間,即可得到甲行走的速度;當時,求出乙行走的路程,根據(jù)乙的行走時間,可以求出乙的速度.
(2)根據(jù)圖象提供的信息,可知當時,乙已經(jīng)到達圖書館,甲距圖書館的路程還有450米,甲到達圖書館還需時間;450÷30=15(分),所以35+15=50(分),所以當 時,橫軸上對應的時間為50.分別求出當時和當時的函數(shù)解析式,根據(jù)甲、乙兩人相距390米,即分別求出的值即可.
試題解析:
(1)甲行走的速度為: (米/分);
由圖可知,當時,乙行走的路程為:
150+30×(35-5)+450=1500米,
則乙行走的速度為:1500÷(35-5)=50(米/分);
(2)設甲出發(fā)t小時與乙相遇,由,
解得
當時,甲行進了米.
結(jié)合函數(shù)圖像可知,當和時, ;當時, ,
①當時,由待定系數(shù)法可求: ,
令,即,解得;
②當時,由待定系數(shù)法可求: ,
令,即,解得.
∴甲行走32分鐘或37分鐘時,甲、乙兩人相距390米.
科目:初中數(shù)學 來源: 題型:
【題目】一艘船從甲碼頭到乙碼頭順流而行用了2小時,從乙碼頭到甲碼頭逆流而行用了2.5小時,已知水流的速度是3km/h,則船在靜水中的速度是( )km/h.
A.27B.28C.30D.36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù) 與正比例函數(shù) 的圖象,點A(1,5),點A′(5,b)與點B′均在反比例函數(shù)的圖象上,點B在直線上,四邊形AA′B′B是平行四邊形,則B點的坐標為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營A種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請用含x的代數(shù)式表示該玩具的銷售量.
(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于450件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場調(diào)查并準備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付倉庫保管費350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在九(1)班的一次體育測試中,某小組7位女生的一分鐘跳繩次數(shù)分別是:162,167,158,165,175,142,167,這組數(shù)據(jù)的中位數(shù)是( 。
A.156
B.162
C.165
D.167
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1:y=2x+6,直線l2:y=kx+b,直線l1.l2分別交x軸于B,C兩點,l1,l2相交于點A,其中C(5,0),點A的橫坐標為3.根據(jù)圖象回答下列問題:
(1)直接寫出關(guān)于x,y的方程組的解: ;
(2)求直線l2的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com