【題目】襄陽(yáng)市某企業(yè)積極響應(yīng)政府“創(chuàng)新發(fā)展”的號(hào)召,研發(fā)了一種新產(chǎn)品.已知研發(fā)、生產(chǎn)這種產(chǎn)品的成本為30元/件,且年銷(xiāo)售量y(萬(wàn)件)關(guān)于售價(jià)x(元/件)的函數(shù)解析式為:
(1)若企業(yè)銷(xiāo)售該產(chǎn)品獲得自睥利潤(rùn)為W(萬(wàn)元),請(qǐng)直接寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于售價(jià)(元/件)的函數(shù)解析式;
(2)當(dāng)該產(chǎn)品的售價(jià)x(元/件)為多少時(shí),企業(yè)銷(xiāo)售該產(chǎn)品獲得的年利潤(rùn)最大?最大年利潤(rùn)是多少?
(3)若企業(yè)銷(xiāo)售該產(chǎn)品的年利瀾不少于750萬(wàn)元,試確定該產(chǎn)品的售價(jià)x(元/件)的取值范圍.
【答案】(1)(2)當(dāng)該產(chǎn)品的售價(jià)定為50元/件時(shí),銷(xiāo)售該產(chǎn)品的年利潤(rùn)最大,最大利潤(rùn)為800萬(wàn)元.(3)要使企業(yè)銷(xiāo)售該產(chǎn)品的年利潤(rùn)不少于750萬(wàn)元,該產(chǎn)品的銷(xiāo)售價(jià)x(元/件)的取值范圍為45≤x≤55.
【解析】
試題分析:(1)根據(jù)“年利潤(rùn)=年銷(xiāo)售量×每件產(chǎn)品的利潤(rùn)(每件產(chǎn)品的售價(jià)-每件產(chǎn)品的進(jìn)價(jià))”直接列出式子,化簡(jiǎn)即可;(2)根據(jù)二次函數(shù)的性質(zhì),分別計(jì)算出兩種情況的最大值,比較即可得結(jié)論;(3)先由(2)的結(jié)論,排除第二種情況,再根據(jù)二次函數(shù)的性質(zhì),由第一種情況確定x的取值范圍.
試題解析:(1)
(2)由(1)知,當(dāng)540≤x<60時(shí),W=-2(x-50)2+800.
∵-2<0,,∴當(dāng)x=50時(shí)。W有最大值800.
當(dāng)60≤x≤70時(shí),W=-(x-55)2+625.
∵-1<0, ∴當(dāng)60≤x≤70時(shí),W隨x的增大而減小。
∴當(dāng)x=60時(shí),W有最大值600.
∴當(dāng)該產(chǎn)品的售價(jià)定為50元/件時(shí),銷(xiāo)售該產(chǎn)品的年利潤(rùn)最大,最大利潤(rùn)為800萬(wàn)元.
(3)當(dāng)40≤x<60時(shí),令W=750,得
-2(x-50)2+800=750,解之,得
由函數(shù)W=-2(x-50)2+800的性質(zhì)可知,
當(dāng)45≤x≤55時(shí),W≥750.
當(dāng)60≤x≤70時(shí),W最大值為600<750.
所以,要使企業(yè)銷(xiāo)售該產(chǎn)品的年利潤(rùn)不少于750萬(wàn)元,該產(chǎn)品的銷(xiāo)售價(jià)x(元/件)的取值范圍為45≤x≤55.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一型號(hào)飛機(jī)著陸后滑行的距離y(單位:m)與滑行時(shí)間x(單位:s)之間的函數(shù)表達(dá)式是y = 60x-1.5x2,該型號(hào)飛機(jī)著陸后需滑行 m才能停下來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線l與直線y=2x﹣3關(guān)于y軸對(duì)稱(chēng),則直線l的解析式是( )
A. y=﹣2x+3B. y=﹣2x﹣3C. y=2x+3D. y=2x﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖(1),若分別以△ABC的三邊AC、BC、AB為邊向三角形外側(cè)作正方形ACDE、BCFG和ABMN,則稱(chēng)這三個(gè)正方形為△ABC的外展三葉正方形,其中任意兩個(gè)正方形為△ABC的外展
雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2.
①如圖(2),當(dāng)∠ACB=90°時(shí),求證:S1=S2;
②如圖(3),當(dāng)∠ACB≠90°時(shí),S1與S2是否仍然相等,請(qǐng)說(shuō)明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF、△AEN、△BGM的面積和為S,請(qǐng)利用圖(1)探究:當(dāng)∠ACB的度數(shù)發(fā)生變化時(shí),S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2-x+1=0的根的情況為( )
A. 有兩個(gè)相等的實(shí)數(shù)根
B. 沒(méi)有實(shí)數(shù)根
C. 有兩個(gè)不相等的實(shí)數(shù)根
D. 有兩個(gè)不相等的實(shí)數(shù)根,且兩實(shí)數(shù)根和為1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O1與⊙O2的圓心距O1O2=6cm,且兩圓的半徑滿足一元二次方程x2-6x+8=0,則兩圓的位置關(guān)系為 ( )
A. 外切 B. 內(nèi)切 C. 外離 D. 相交
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某樓盤(pán)2013年房?jī)r(jià)為每平方米8100元,經(jīng)過(guò)兩年連續(xù)降價(jià)后,2015年房?jī)r(jià)為7600元.設(shè)該樓盤(pán)這兩年房?jī)r(jià)平均降低率為x,根據(jù)題意可列方程為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com