【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)P是AB邊上的一個(gè)動點(diǎn),連接CP,過點(diǎn)P作PC的垂線交AD于點(diǎn)E,以 PE為邊作正方形PEFG,頂點(diǎn)G在線段PC上,對角線EG、PF相交于點(diǎn)O.
(1)若AP=1,則AE=;
(2)①求證:點(diǎn)O一定在△APE的外接圓上; ②當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)B時(shí),點(diǎn)O也隨之運(yùn)動,求點(diǎn)O經(jīng)過的路徑長;
(3)在點(diǎn)P從點(diǎn)A到點(diǎn)B的運(yùn)動過程中,△APE的外接圓的圓心也隨之運(yùn)動,求該圓心到AB邊的距離的最大值.
【答案】
(1)
(2)①證明:∵PF⊥EG,
∴∠EOF=90°,
∴∠EOF+∠A=180°,
∴A、P、O、E四點(diǎn)共圓,
∴點(diǎn)O一定在△APE的外接圓上;
②解:連接OA、AC,如圖1所示:
∵四邊形ABCD是正方形,
∴∠B=90°,∠BAC=45°,
∴AC= =4 ,
∵A、P、O、E四點(diǎn)共圓,
∴∠OAP=∠OEP=45°,
∴點(diǎn)O在AC上,
當(dāng)P運(yùn)動到點(diǎn)B時(shí),O為AC的中點(diǎn),OA= AC=2 ,
即點(diǎn)O經(jīng)過的路徑長為2 ;
(3)解:設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:
則MN∥AE,
∵M(jìn)E=MP,
∴AN=PN,
∴MN= AE,
設(shè)AP=x,則BP=4﹣x,
由(1)得:△APE∽△BCP,
∴ ,即 ,
解得:AE=x﹣ x2=﹣ (x﹣2)2+1,
∴x=2時(shí),AE的最大值為1,此時(shí)MN的值最大= ×1= ,
即△APE的圓心到AB邊的距離的最大值為 .
【解析】(1)解:∵四邊形ABCD、四邊形PEFG是正方形, ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
∴∠AEP=∠PBC,
∴△APE∽△BCP,
∴ ,即 ,
解得:AE= ;
故答案為: ;
(1)由正方形的性質(zhì)得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應(yīng)邊成比例即可求出AE的長;(2)①A、P、O、E四點(diǎn)共圓,即可得出結(jié)論;②連接OA、AC,由光桿司令求出AC=4 ,由圓周角定理得出∠OAP=∠OEP=45°,周長點(diǎn)O在AC上,當(dāng)P運(yùn)動到點(diǎn)B時(shí),O為AC的中點(diǎn),即可得出答案;(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN= AE,設(shè)AP=x,則BP=4﹣x,由相似三角形的對應(yīng)邊成比例求出AE=x﹣ x2=﹣ (x﹣2)2+1,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值= 即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小張?jiān)谑O碌?個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)畫樹狀圖或列表,寫出點(diǎn)Q所有可能的坐標(biāo);
(2)求點(diǎn)Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將八個(gè)邊長為1的小正方形擺放在平面直角坐標(biāo)系中,若過原點(diǎn)的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個(gè)單位后所得直線l′的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,設(shè)∠A、∠B、∠C的對邊分別為a,b,c,過點(diǎn)A作AD⊥BC,垂足為D,會有sin∠C= ,則
S△ABC= BC×AD= ×BC×ACsin∠C= absin∠C,
即S△ABC= absin∠C
同理S△ABC= bcsin∠A
S△ABC= acsin∠B
通過推理還可以得到另一個(gè)表達(dá)三角形邊角關(guān)系的定理﹣余弦定理:
如圖2,在△ABC中,若∠A、∠B、∠C的對邊分別為a,b,c,則
a2=b2+c2﹣2bccos∠A
b2=a2+c2﹣2accos∠B
c2=a2+b2﹣2abcos∠C
用上面的三角形面積公式和余弦定理解決問題:
(1)如圖3,在△DEF中,∠F=60°,∠D、∠E的對邊分別是3和8.求S△DEF和DE2 .
解:S△DEF= EF×DFsin∠F=;
DE2=EF2+DF2﹣2EF×DFcos∠F= .
(2)如圖4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分別是以AB、BC、AC為邊長的等邊三角形,設(shè)△ABC、△ABC'、△BCA'、△ACB'的面積分別為S1、S2、S3、S4 , 求證:S1+S2=S3+S4 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期天,小明和小芳從同一小區(qū)門口同時(shí)出發(fā),沿同一路線去離該小區(qū)1800米的少年宮參加活動,為響應(yīng)“節(jié)能環(huán)保,綠色出行”的號召,兩人都步行,已知小明的速度是小芳的速度的1.2倍,結(jié)果小明比小芳早6分鐘到達(dá),求小芳的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次世界魔方大賽吸引世界各地共600名魔方愛好者參加,本次大賽首輪進(jìn)行3×3階魔方賽,組委會隨機(jī)將愛好者平均分到20個(gè)區(qū)域,每個(gè)區(qū)域30名同時(shí)進(jìn)行比賽,完成時(shí)間小于8秒的愛好者進(jìn)入下一輪角逐;如圖是3×3階魔方賽A區(qū)域30名愛好者完成時(shí)間統(tǒng)計(jì)圖,求: ①A區(qū)域3×3階魔方愛好者進(jìn)入下一輪角逐的人數(shù)的比例(結(jié)果用最簡分?jǐn)?shù)表示).
②若3×3階魔方賽各個(gè)區(qū)域的情況大體一致,則根據(jù)A區(qū)域的統(tǒng)計(jì)結(jié)果估計(jì)在3×3階魔方賽后進(jìn)入下一輪角逐的人數(shù).
③若3×3階魔方賽A區(qū)域愛好者完成時(shí)間的平均值為8.8秒,求該項(xiàng)目賽該區(qū)域完成時(shí)間為8秒的愛好者的概率(結(jié)果用最簡分?jǐn)?shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
(3)在(2)的條件下,直接寫出tan∠CAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣2,0),B(6,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點(diǎn)坐標(biāo);
(3)點(diǎn)P為y軸右側(cè)拋物線上一個(gè)動點(diǎn),若S△PAB=32,求出此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com