【題目】如圖,△ABC是等邊三角形,點D、E分別在BC、AC上,且BD=CE , ADBE相交于點F
(1)試說明△ABD≌△BCE
(2)△EAF與△EBA相似嗎?說說你的理由.

【答案】
(1)證明:∵△ABC是等邊三角形,

AB=BC,∠ABD=∠BCE=∠BAC,

又∵BD=CE,

∴△ABD≌△BCE


(2)解:相似;

理由如下:

∵△ABD≌△BCE

∴∠BAD=∠CBE,

∴∠BAC-∠BAD=∠CBA-∠CBE,

∴∠EAF=∠EBA,又∵∠AEF=∠BEA,

∴△EAF∽△EBA


【解析】(1)根據(jù)等邊三角形各邊長相等和各內(nèi)角為60°的性質(zhì)可以求證△ABD≌△BCE;(2)根據(jù)全等三角形對應(yīng)角相等性質(zhì)可得∠BAD=∠CBE , 進而可以求得∠EAF=∠EBA , 即可求證△EAF∽△EBA , 即可解題.
【考點精析】認真審題,首先需要了解相似三角形的判定(相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx﹣3(a,b是常數(shù))的圖象與x軸交于點A(﹣3,0)和點B(1,0),與y軸交于點C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q.

(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、E分別在線段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,則AB的長為( 。
A.
B.10
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ABDC , ∠B=90°,EBC上一點,且AEED . 若BC=12,DC=7,BEEC=1:2,

(1)AB
(2)AED的面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列4組條件中,能判定△ABC∽△DEF的是( 。
A.AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°
B.∠A=45°,∠B=55°;∠D=45°,∠F=75°
C.BC=4,AC=6,AB=9;DE=18,EF=8,DF=12
D.AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點E,點FAC上,且BD=DF.

(1)求證:CF=EB;

(2)請你判斷AE、AFBE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一個實數(shù)根,則ab的取值范圍為( 。
A.ab≥
B.ab
C.ab≥
D.ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.

(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好地貫徹落實國家關(guān)于“強化體育課和課外鍛煉,促進青少年身心健康、體魄強健”的精神,某校大力開展體育活動.該校九年級三班同學組建了足球、籃球、乒乓球、跳繩四個體育活動小組.經(jīng)調(diào)查,全班同學全員參與,各活動小組人數(shù)分布情況的扇形圖和條形圖如下:

(1)求該班學生人數(shù);
(2)請你補全條形圖;
(3)求跳繩人數(shù)所占扇形圓心角的度數(shù).

查看答案和解析>>

同步練習冊答案