【題目】如圖,在平面直角坐標系中,O為坐標原點,等腰直角三角形OAB的斜邊AO在x軸上,,點B的坐標為.
(1)求A點坐標;
(2)過B作軸于C,點D從B出發(fā)沿射線BC以每秒2個單位的速度運動,連接AD、OD,動點D的運動時間為t,的面積為S,求S與t的數(shù)量關系,并直接寫出t的取值范圍;
(3)在(2)的條件下,當點D運動到x軸下方時,延長AB交y軸于E,過E作于H,在x軸正半軸上取點F,連接BF交EH于G,,當時,求點D的坐標.
【答案】(1)A(﹣14,0);(2)S;(3)D(﹣7,)或(﹣7,﹣21).
【解析】
(1)作BH⊥OA于H.理由等腰直角三角形的性質(zhì)求出OA即可解決問題;
(2)如圖2中,分兩種情形當0≤t時,當t時,分別求解即可解決問題;
(3)如圖3中,作BM∥AH交EH于N,BP⊥AD于P.理由相似三角形的性質(zhì)證明EH=2AH,解直角三角形求出EH,AH,設H(m,n),構建方程組求出m,n,求出直線AH的解析式即可解決問題.
(1)作BH⊥OA于H.
∵BA=BO,∠ABO=90°,∴BH=AH=OH.
∵B(﹣7,7),∴AH=BH=OH=7,∴OA=14,∴A(﹣14,0).
(2)如圖2中,當0≤t時,S14×(7﹣2t)=49﹣14t
當t時,S14×(2t﹣7)=14t﹣49.
綜上所述:S.
(3)如圖3中,作BM∥AH交EH于N,BP⊥AD于P.
∵BP⊥AH,EH⊥AH,∴BP∥EH.
∵AB=BE,∴AP=PH,∴PBEH.
∵BN∥AH,∴EN=NH,
∴BNAH,∠BNG=∠BPD=90°.
∵BM∥AH,∴∠BMF=∠MAH.
∵∠AFB=2∠OAD=∠FMB+∠FBM,
∴∠FBM=∠FMB=∠OAD.
∵∠OAD+∠ADC=90°,∠PBD+∠ADC=90°,
∴∠OAD=∠PBD,∴∠PBD=∠NBG.
∵∠BPD=∠BNG=90°,∴△BPD∽△BNG,
∴2,∴BP=2BN,∴EH=2AH.
在Rt△AEH中,∵AE=14,EH=2AH,
∴EH,AH,
設H(m,n),則有:,
解得或,
∴H(,)或(,).
易求直線AH的解析式為yx或y=﹣3x﹣42,令x=-7,得:y=或﹣21,
∴D(﹣7,)或(﹣7,﹣21).
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①位似圖形都相似;②位似圖形都是平移后再放大(或縮小)得到;③直角三角形斜邊上的中線與斜邊的比為1:2;④兩個相似多邊形的面積比為4:9,則周長的比為16:81中,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F,將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N.有下列四個結論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF.其中,將正確結論的序號全部選對的是
A.①②③ B.①②④ C.②③④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一次函數(shù)圖象如圖,
(1)求一次函數(shù)的解析式;
(2)若點P為該一次函數(shù)圖象上一動點,且點A為該函數(shù)圖象與x軸的交點,若S△OAP=2,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索題:(x﹣1)(x+1)=x2﹣1;
(x﹣1)(x2+x+1)=x3﹣1;
(x﹣1)(x3+x2+x+1)=x4﹣1;
(x﹣1)(x4+x3+x2+x+1)=x5﹣1
…
根據(jù)前面的規(guī)律,回答下列問題:
(1)(x﹣1)(xn+xn﹣1+xn﹣2+…+x3+x2+x+1)=_____.
(2)當x=3時,(3﹣1)(32015+32014+32013+…+33+32+3+1)=______.
(3)求:22014+22013+22012+…+23+22+2+1的值.(請寫出解題過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com