30° 90°
分析:解直角三角形求出∠ABC=30°,然后過點B作BC的垂線,在截取A′B=AB,再以點A′為圓心,以AO為半徑畫弧,以點B為圓心,以BO為半徑畫弧,兩弧相交于點O′,連接A′O′、BO′,即可得到△A′O′B;根據(jù)旋轉(zhuǎn)角與∠ABC的度數(shù),相加即可得到∠A′BC;
根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AB=2AC,即A′B的長,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出△BOO′是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得BO=OO′,等邊三角形三個角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四點共線,再利用勾股定理列式求出A′C,從而得到OA+OB+OC=A′C.
解答:
解:∵∠C=90°,AC=1,BC=
,
∴tan∠ABC=
=
=
,
∴∠ABC=30°,
∵△AOB繞點B順時針方向旋轉(zhuǎn)60°,
∴△A′O′B如圖所示;
∠A′BC=∠ABC+60°=30°+60°=90°,
∵∠C=90°,AC=1,∠ABC=30°,
∴AB=2AC=2,
∵△AOB繞點B順時針方向旋轉(zhuǎn)60°,得到△A′O′B,
∴A′B=AB=2,BO=BO′,A′O′=AO,
∴△BOO′是等邊三角形,
∴BO=OO′,∠BOO′=∠BO′O=60°,
∵∠AOC=∠COB=BOA=120°,
∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,
∴C、O、A′、O′四點共線,
在Rt△A′BC中,A′C=
=
=
,
∴OA+OB+OC=A′O′+OO′+OC=A′C=
.
故答案為:30°;90°;
.
點評:本題考查了利用旋轉(zhuǎn)變換作圖,旋轉(zhuǎn)變換的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),勾股定理,等邊三角形的判定與性質(zhì),綜合性較強(qiáng),最后一問求出C、O、A′、O′四點共線是解題的關(guān)鍵.