【題目】(問題提出)八年級上冊課本中有這樣一句話“兩邊和其中一邊的對角分別相等的兩個三角形不一定全等”,下面我們一起探究什么情況下全等?
(初步思考)我們不妨將文字語言轉(zhuǎn)化成符號語言:在和中,,,.
(深入探究)
(1)當與是銳角時,和是否全等?若全等,請證明;若不全等,請舉出反例;
(2)當與是直角時,和是否全等?若全等,直接說明理由,不需要證明;若不全等,請舉出反例;
(3)當與是鈍角時,和是否全等?若全等,請借助下圖證明;若不全等,請舉出反例.
【答案】(1)和不全等,反例見解析;(2)和全等,理由見解析;(3)和全等,證明見解析
【解析】
(1)舉例出一個銳角三角形和一個鈍角三角形滿足即可;
(2)根據(jù)兩個直角三角形全等的判定定理:定理即可得;
(3)如圖(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)得出,再根據(jù)直角三角形全等的判定定理與性質(zhì)得出,然后根據(jù)三角形全等的判定定理即可得證.
(1)和不全等
反例:如圖所示,,但顯然和不全等;
(2)和全等
理由:斜邊和一條直角邊分別相等的兩個直角三角形全等,即定理;
(3)和全等,證明如下:
如圖,過點作交的延長線于,過點作交的延長線于
∵,且、都是鈍角
∴,即
在和中,
∴
∴
在和中,
∴
∴
在和中,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,BE平分∠ABC,DE∥BC.
(1)試猜想△BDE的形狀,并說明理由;
(2)若∠A=35°,∠C=70°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“靈動三角形”.如,三個內(nèi)角分別為120°,40°,20°的三角形是“靈動三角形”.
如圖,∠MON=60°,在射線OM上找一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(規(guī)定0°< ∠OAC < 90°).
(1)∠ABO的度數(shù)為 °,△AOB (填“是”或“不是”靈動三角形);
(2)若∠BAC=60°,求證:△AOC為“靈動三角形”;
(3)當△ABC為“靈動三角形”時,求∠OAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,C分別在線段NM,NA上,在△ABC中,∠A∶∠ABC∶∠BCA=3∶5∶10,且△ABC≌△MNC,則∠BCM∶∠NBA等于( )
A.1∶2B.1∶3C.1∶4D.1∶5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD于Q,PQ=3,PE=1.AD的長是( 。
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經(jīng)過原點,頂點分別為A,B,與x軸的另一個交點分別為M、N,如果點A與點B,點M與點N都關于原點O成中心對稱,則拋物線C1和C2為姐妹拋物線,請你寫出一對姐妹拋物線C1和C2,使四邊形ANBM恰好是矩形,你所寫的一對拋物線解析式是_______________________和_________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E.
(1)當∠BAC為銳角時,如圖①,求證:∠CBE=∠BAC;
(2)當∠BAC為鈍角時,如圖②,CA的延長線與⊙O相交于點E,(1)中的結(jié)論是否仍然成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知點A、B是反比例函數(shù)y=﹣上在第二象限內(nèi)的分支上的兩個點,點C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com