【題目】某中學九(2)班同學為了了解2019年某小區(qū)家庭月均用水情況,隨機調查了該小區(qū)的部分家庭,并將調查數據進行如下整理:
月均用水量(噸) | 頻數 | 頻率 |
6 | 0.12 | |
________ | 0.24 | |
16 | 0.32 | |
10 | 0.20 | |
4 | ________ | |
2 | 0.04 |
請解答以下問題:
(1)把上面的頻數分布表和頻數分布直方圖補充完整;
(2)月均用水量的中位數落在第________小組;
(3)若該小區(qū)有1000戶家庭,根據調查數據估計,該小區(qū)月均用水量超過20噸的家庭大約有多少戶?
【答案】(1)見解析;(2)三;(3)120戶
【解析】
(1)根據月用電量是0<x≤5的戶數是6,對應的頻率是0.12,求出調查的總戶數,然后利用總戶數乘以頻率就是頻數,頻數除以總數就是頻率,即可得出答案;再根據求出的頻數,即可補全統(tǒng)計圖;
(2)根據中位數的定義結合各組的頻數可得結果;
(3)根據表格求出月均用水量在20<x≤25的頻率,進而求出月均用水量超過20t的頻率,乘以1000即可得到結果.
解:(1)調查的家庭總數是:6÷0.12=50(戶),
則月用水量5<x≤10的頻數是:50×0.24=12(戶),
月用水量20<x≤25的頻率==0.08;
故答案為:12,0.08;
補全的圖形如下圖:
月均用水量(噸) | 頻數 | 頻率 |
6 | 0.12 | |
12 | 0.24 | |
16 | 0.32 | |
10 | 0.20 | |
4 | 0.08 | |
2 | 0.04 |
(2)∵各組的頻數分別為6,12,16,10,4,2,
∴月均用水量的中位數落在第三小組;
(3)月均用水量在20<x≤25的頻率為1-(0.12+0.24+0.32+0.20+0.04)=0.08,
故月均用水量超過20t的頻率為0.08+0.04=0.12,
則該小區(qū)月均用水量超過20t的家庭大約有1000×0.12=120(戶).
科目:初中數學 來源: 題型:
【題目】如圖,在中,,以點為圓心,長為半徑畫弧,交線段于點,連接,以點為圓心,長為半徑畫弧,交線段于點,連接.
(1)求的度數.
(2)設.
①線段的長是關于的方程的一個根嗎?說明理由.
②若為的中點,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線PT與⊙O相切于點T,直線PO與⊙O相交于A,B兩點.
(1)求證:PT2=PAPB;
(2)若PT=TB= ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.
(1)如圖①,求∠T和∠CDB的大;
(2)如圖②,當BE=BC時,求∠CDO的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點D,E為BC的中點,連接DE并延長交AC的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若CF=2,DF=4,求⊙O直徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB,AD的長是關于x的方程x2﹣mx+﹣=0的兩個實數根.
(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點逆時針旋轉90°,得到△A1B1C1 , △A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2 .
(1)畫出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC邊上一點,△ABC經旋轉、平移后點P的對應點分別為P1、P2 , 請寫出點P1、P2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC≌△ADE,BC的延長線交AD于點M,交DE于點F.若∠D=25°,∠AED=105°,∠DAC=10°,求∠DFB的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com