如圖,已知△ABC的頂點A,B,C的坐標分別是A(1,-1),B(1,-5),C(4,-5).
(1)將△ABC繞點A按順時針方向旋轉90°后得到△A1B1C1,并直接寫出頂點A1、B1、C1的坐標;
(2)作出△ABC關于點P(0,-2)成中心對稱的圖形△A2B2C2,并直接寫出頂點A2、B2、C2的坐標.
分析:(1)根據旋轉的性質作出△A1B1C1,結合圖形即可求得頂點A1、B1、C1的坐標;
(2)根據旋轉的性質作出△A2B2C2,結合圖形即可求得頂點A2、B2、C2的坐標.
解答:解:(1)如圖所示:△A1B1C1即為所求,則點A1(1,-1),B1(-3,-1)C1(-3,-4);

(2)如圖所示:△A2B2C2即為所求,點A2(-1,-3),B2(-1,1),C2(-4,1).
點評:此題考查了旋轉變換.此題難度適中,結合旋轉的性質,準確作出圖形是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4

在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3

在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16

按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長度,得到△EFA.
(1)判斷AF與BE的位置關系,并說明理由;
(2)若∠BEC=15°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個頂點的坐標分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請直接寫出點A關于y軸對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請畫出△A1B1C1和△A2B2C1,并寫出一個點A2的坐標.(只畫一個△A2B2C1即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC的三個頂點的坐標分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個三角形,使它與△ABC關于y軸對稱;
(2)寫出(1)中所作的三角形的三個頂點的坐標.

查看答案和解析>>

同步練習冊答案