【題目】一次函數(shù)y=2x﹣1一定不經(jīng)過第________象限.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市有12000名學(xué)生參加考試,為了了解考試情況,從中抽取1000名學(xué)生的成績進行統(tǒng)計分析,在這個問題中,有下列三種說法:①1000名考生是總體的一個樣本;②每一名考生是個體;③樣本容量是1000人.其中正確的說法有( )
A. 0種 B. 1種 C. 2種 D. 3種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知等腰三角形ABC的底邊BC=20cm,D是腰AB上一點,且CD=16cm,BD=12cm,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大黃魚是中國特有的地方性魚類,有“國魚”之稱,由于過去濫捕等多種因素,大黃魚資源已基本枯竭,目前,我市已培育出十余種大黃魚品種,某魚苗人工養(yǎng)殖基地對其中的四個品種“寧港”、“御龍”、“甬岱”、“象山港”共300尾魚苗進行成活實驗,從中選出成活率最高的品種進行推廣,通過實驗得知“甬岱”品種魚苗成活率為,并把實驗數(shù)據(jù)繪制成下列兩幅統(tǒng)計圖(部分信息未給出):
(1) 求實驗中“寧港”品種魚苗的數(shù)量;
(2) 求實驗中“甬岱”品種魚苗的成活數(shù),并補全條形統(tǒng)計圖;
(3)你認為應(yīng)選哪一品種進行推廣?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD,BC分別交于點E,F(xiàn),點O是BD的中點,直線OK∥AF,交AD于點K,交BC于點G.
(1)求證:△DOK≌△BOG;
(2)探究線段AB、AK、BG三者之間的關(guān)系,并證明你的結(jié)論;
(3)若KD=KG,BC=2 ﹣1,求KD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,拋物線與軸交于A,B兩點,點P在拋物線上(點P與A,B兩點不重合),如果△ABP的三邊滿足,則稱點P為拋物線的勾股點。
(1)直接寫出拋物線的勾股點的坐標(biāo);
(2)如圖2,已知拋物線C:與軸交于A,B兩點,點P(1,)是拋物線C的勾股點,求拋物線C的函數(shù)表達式;
(3)在(2)的條件下,點Q在拋物線C上,求滿足條件的點Q(異于點P)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實數(shù)根.比如對于方程,操作步驟是:
第一步:根據(jù)方程的系數(shù)特征,確定一對固定點A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動一個直角三角板,使一條直角邊恒過點A,另一條直角邊恒過點B;
第三步:在移動過程中,當(dāng)三角板的直角頂點落在x軸上點C處時,點C的橫坐標(biāo)m即為該方程的一個實數(shù)根(如圖1);
第四步:調(diào)整三角板直角頂點的位置,當(dāng)它落在x軸上另一點D處時,點D的橫坐標(biāo)n即為該方程的另一個實數(shù)根.
(1)在圖2中,按照“第四步”的操作方法作出點D(請保留作出點D時直角三角板兩條直角邊的痕跡);
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程的一個實數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個固定點的位置,若要以此方法找到一元二次方程 (a≠0,≥0)的實數(shù)根,請你直接寫出一對固定點的坐標(biāo);
(4)實際上,(3)中的固定點有無數(shù)對,一般地,當(dāng)m1,n1,m2,n2與a,b,c之間滿足怎樣的關(guān)系時,點P(m1,n1),Q(m2,n2)就是符合要求的一對固定點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com