【題目】如圖,已知在中,,在上取點(diǎn),使得,若.
(1)求證:;
(2)若平分,求的度數(shù).
【答案】(1)見(jiàn)解析;(2)∠ABE=120°.
【解析】
(1)欲證明AB=BE,只需推知∠A=∠E即可.
(2)由三角形內(nèi)角和定理和等腰三角形的性質(zhì)求得∠A=30°,結(jié)合(1)中的∠A=∠E和△ABE的內(nèi)角和是180°解答.
(1)∵AD=CD ∴∠A=∠ACD.
又∵CD∥BE ∴∠ACD=∠E.
∴∠A=∠E.
∴AB=BE;
(2)∵在Rt△ABC中,∠ABC=90°
∴∠A+∠ACB=90°.
∵CD平分∠ACB,
∴∠ACD=∠BCD.
又∵∠A=∠ACD,
∴∠A+∠ACD+∠BCD=3∠A=90°.
∴∠A=30°.
∵由(1)得∠A=∠E=30°.
∴∠ABE=180°﹣2∠A=120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫(xiě)作法,保留作圖痕跡);
(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.如圖,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
(1)求證:△OCP∽△PDA;
(2)若tan∠PAO=,求邊AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹(shù),現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹(shù)苗可供選擇,其具體銷(xiāo)售方案如下:
甲林場(chǎng) | 乙林場(chǎng) | ||
購(gòu)樹(shù)苗數(shù)量 | 銷(xiāo)售單價(jià) | 購(gòu)樹(shù)苗數(shù)量 | 銷(xiāo)售單價(jià) |
不超過(guò)1000棵時(shí) | 4元/棵 | 不超過(guò)2000棵時(shí) | 4元/棵 |
超過(guò)1000棵的部分 | 3.8元/棵 | 超過(guò)2000棵的部分 | 3.6元/棵 |
設(shè)購(gòu)買(mǎi)白楊樹(shù)苗x棵,到兩家林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用分別為y甲(元)、y乙(元).
(1)該村需要購(gòu)買(mǎi)1500棵白楊樹(shù)苗,若都在甲林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用為 元,若都在乙林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購(gòu)買(mǎi)樹(shù)苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于的不等式組有且僅有三個(gè)整數(shù)解,且關(guān)于的分式方程的解為整數(shù),則符合條件的整數(shù)的個(gè)數(shù)是
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,BC=2OC,E為AB邊上一點(diǎn).
(1)若CE=6,∠ACE=15°,求BC的長(zhǎng);
(2)若F為BO上一點(diǎn),且BF=EF,G為CE中點(diǎn),連接FG,AG,求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)O在AB上,BC=CD,過(guò)點(diǎn)C作⊙O的切線,分別交AB,AD的延長(zhǎng)線于點(diǎn)E,F(xiàn).
(1)求證:AF⊥EF;(2)若cosA=,BE=1,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某班級(jí)決定開(kāi)展球類(lèi)活動(dòng),要求每個(gè)學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項(xiàng)參加訓(xùn)練(只選擇一項(xiàng)),根據(jù)學(xué)生的報(bào)名情況制成如下統(tǒng)計(jì)表:
項(xiàng)目 | 籃球 | 足球 | 排球 | 乒乓球 | 羽毛球 |
報(bào)名人數(shù) | 12 | 8 | 4 | a | 10 |
占總?cè)藬?shù)的百分比 | 24% | b |
(1)該班學(xué)生的總?cè)藬?shù)為 人;
(2)由表中的數(shù)據(jù)可知:a= ,b= ;
(3)報(bào)名參加排球訓(xùn)練的四個(gè)人為兩男(分別記為A、B)兩女(分別記為C、D),現(xiàn)要隨機(jī)在這4人中選2人參加學(xué)校組織的校級(jí)訓(xùn)練,請(qǐng)用列表或樹(shù)狀圖的方法求出剛好選中一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com