【題目】如圖,拋物線y=ax2﹣5ax+c與坐標軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點B在x軸上,AC=BC,過點B作BD⊥x軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.
(1)求拋物線的解析式及點D的坐標;
(2)當△CMN是直角三角形時,求點M的坐標;
(3)試求出AM+AN的最小值.
【答案】(1)拋物線解析式為y=﹣x2+x+4;D點坐標為(3,5);(2)M點的坐標為(0,)或(0,);(3)AM+AN的最小值為.
【解析】(1)利用待定系數(shù)法求拋物線解析式;利用等腰三角形的性質(zhì)得B(3,0),然后計算自變量為3所對應的二次函數(shù)值可得到D點坐標;
(2)利用勾股定理計算出BC=5,設M(0,m),則BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=∠OCB,根據(jù)相似三角形的判定方法,當時,△CMN∽△COB,于是有∠CMN=∠COB=90°,即;當時,△CMN∽△CBO,于是有∠CNM=∠COB=90°,即,然后分別求出m的值即可得到M點的坐標;
(3)連接DN,AD,如圖,先證明△ACM≌△DBN,則AM=DN,所以AM+AN=DN+AN,利用三角形三邊的關(guān)系得到DN+AN≥AD(當且僅當點A、N、D共線時取等號),然后計算出AD即可.
(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,
∴拋物線解析式為y=﹣x2+x+4;
∵AC=BC,CO⊥AB,
∴OB=OA=3,
∴B(3,0),
∵BD⊥x軸交拋物線于點D,
∴D點的橫坐標為3,
當x=3時,y=﹣×9+×3+4=5,
∴D點坐標為(3,5);
(2)在Rt△OBC中,BC==5,
設M(0,m),則BN=4﹣m,CN=5﹣(4﹣m)=m+1,
∵∠MCN=∠OCB,
∴當時,△CMN∽△COB,則∠CMN=∠COB=90°,
即,解得m=,此時M點坐標為(0,);
當時,△CMN∽△CBO,則∠CNM=∠COB=90°,
即,解得m=,此時M點坐標為(0,);
綜上所述,M點的坐標為(0,)或(0,);
(3)連接DN,AD,如圖,
∵AC=BC,CO⊥AB,
∴OC平分∠ACB,
∴∠ACO=∠BCO,
∵BD∥OC,
∴∠BCO=∠DBC,
∵DB=BC=AC=5,CM=BN,
∴△ACM≌△DBN,
∴AM=DN,
∴AM+AN=DN+AN,
而DN+AN≥AD(當且僅當點A、N、D共線時取等號),
∴DN+AN的最小值=,
∴AM+AN的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】黃巖島是我國南沙群島的一個小島,漁產(chǎn)豐富.一天某漁船離開港口前往該海域捕魚.捕撈一段時間后,發(fā)現(xiàn)一外國艦艇進入我國水域向黃巖島駛來,漁船向漁政部門報告,并。立即返航.漁政船接到報告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離s和漁船離開港口的時間t之間的函數(shù)圖象.(假設漁船與漁政船沿同一航線航行)
(1)直接寫出漁船離開港口的距離s和漁船離開港口的時間t之間的函數(shù)關(guān)系式
(2)求漁船與漁政船相遇對,兩船與黃巖島的距離、
(3在漁政船駛往黃巖島的過程中,求漁船從港口 出發(fā)經(jīng)過多長時間與漁政船相距30海里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點表示的數(shù)為,點表示的數(shù)為,是數(shù)軸上一點,且,動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為秒.
(1)數(shù)軸上點表示的數(shù)為 ,并用含的代數(shù)式表示點所表示的數(shù)為 ;
(2)設是的中點,是的中點,點在運動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由,若不變,求線段的長度;
(3)動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,動點從點出發(fā),以點每秒個單位長度沿數(shù)軸向左勻速運動,若三點同時出發(fā),在運動過程中,到的距離,到距離中,是否會有這兩段距離相等的時候?若有,請求出此時的值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…
利用你的發(fā)現(xiàn)的規(guī)律解決下列問題
(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)= (直接填空);
(2)(a﹣b)(an﹣1+an﹣2b+an﹣3b2…+abn﹣2+bn﹣1)= (直接填空);
(3)利用(2)中得出的結(jié)論求62019+62018+…+62+6+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結(jié)論時,需添加輔助線,則作法不正確的是( 。
A. 作∠APB的平分線PC交AB于點C
B. 過點P作PC⊥AB于點C且AC=BC
C. 取AB中點C,連接PC
D. 過點P作PC⊥AB,垂足為C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一出租車一天下午以鼓樓為出發(fā)點在東西方向運營,向東走為正,向西走為負,行車里程(單位:km)依先后次序記錄如下:.
(1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?
(2)若每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)有理數(shù)、、在數(shù)軸上的對應點如圖所示,化簡代數(shù)式:
(2)哈市某垃圾處理場一周處理生活垃圾任務為210噸,計劃每天處理30噸,由于各種原因,實際每天處理量與計劃相比有出入,某周七天的實際處理情況記錄如下:
+6;-3;+4;-1;+2;-5;0
①垃圾場這一周實際處理生活垃圾是多少噸?
②若該垃圾場實行計量工資,每處理一噸生活垃圾給300元,同時又規(guī)定超額處理一噸垃圾另外獎100元,完不成任務的少處理一噸另外扣100元,那么該場工人這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“幸福是奮斗出來的”,在數(shù)軸上,若C到A的距離剛好是3,則C點叫做A的“幸福點”,若C到A、B的距離之和為6,則C叫做A、B的“幸福中心”
(1)如圖1,點A表示的數(shù)為﹣1,則A的幸福點C所表示的數(shù)應該是 ;
(2)如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為4,點N所表示的數(shù)為﹣2,點C就是M、N的幸福中心,則C所表示的數(shù)可以是 (填一個即可);
(3)如圖3,A、B、P為數(shù)軸上三點,點A所表示的數(shù)為﹣1,點B所表示的數(shù)為4,點P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點P出發(fā),以2個單位每秒的速度向左運動,當經(jīng)過多少秒時,電子螞蟻是A和B的幸福中心?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com