【題目】在平面上有且只有4個(gè)點(diǎn),這4個(gè)點(diǎn)中有一個(gè)獨(dú)特的性質(zhì):連結(jié)每?jī)牲c(diǎn)可得到6條線段,這6條線段有且只有兩種長(zhǎng)度.我們把這四個(gè)點(diǎn)稱作準(zhǔn)等距點(diǎn).例如正方形ABCD的四個(gè)頂點(diǎn)(如圖1),有AB=BC=CD=DA,AC=BD.其實(shí)滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個(gè)點(diǎn),滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個(gè)點(diǎn),滿足OA=OB=OC=BC,AB=AC.
(1)如圖,若等腰梯形ABCD的四個(gè)頂點(diǎn)是準(zhǔn)等距點(diǎn),且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請(qǐng)?jiān)佼嫵鲆粋(gè)四邊形,使它的四個(gè)頂點(diǎn)為準(zhǔn)等距點(diǎn),并寫出相等的線段.
【答案】(1)①AB=DC=AD, AC=BD=BC.②∠BCD=72°.(2)見解析.
【解析】
(1)①結(jié)合等腰梯形的性質(zhì)及題意所表述的含義可寫出符合題意的結(jié)論.②先證△ABC≌△DCB,得出∠DBC=∠ACB,根據(jù)題意可求得∠BDC=∠BCD=2∠ACB,設(shè)∠ACB=x°,利用內(nèi)角和定理可得出答案.
(2)可選擇畫菱形.
解:(1)①AB=DC=AD,AC=BD=BC,
②∵AC=BD,AB=DC,BC=BC,
∴△ABC≌△DCB,
∴∠DBC=∠ACB,
∵AD∥BC,
∴∠DAC=∠ACB,
∵DC=AD,∠DAC=∠ACD,
∴∠ACD=∠ACB,
∵BC=BD,∠BDC=∠BCD=2∠ACB,
設(shè)∠ACB=x°,則∠BDC=∠BCD=2x°,∠DBC=x°,
∴2x+2x+x=180,
解得x=36,
∴∠BCD=72°.
(2)所畫圖形如下:四邊形ABCD是菱形(∠DAB=60°),
AB=BC=CD=AD=BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面上,邊長(zhǎng)為的正方形和短邊長(zhǎng)為的矩形幾何中心重合,如圖①,當(dāng)正方形和矩形都水平放置時(shí),容易求出重疊面積.
甲、乙、丙三位同學(xué)分別給出了兩個(gè)圖形不同的重疊方式;
甲:矩形繞著幾何中心旋轉(zhuǎn),從圖②到圖③的過(guò)程中,重疊面積大小不變.
乙:如圖④,矩形繞著幾何中心繼續(xù)旋轉(zhuǎn),矩形的兩條長(zhǎng)邊與正方形的對(duì)角線平行時(shí),此時(shí)的重疊面積大于圖③的重疊面積.
丙:如圖⑤,將圖④中的矩形向左上方平移,使矩形的一條長(zhǎng)邊恰好經(jīng)過(guò)正方形的對(duì)角線,此時(shí)的重疊面積是個(gè)圖形中最小的.
下列說(shuō)法正確的是( )
A.甲、乙、丙都對(duì)B.只有乙對(duì)C.只有甲不對(duì)D.甲、乙、丙都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)解析式為y=mx2﹣2mx+m﹣,二次函數(shù)與x軸交于A、B兩點(diǎn)(B在A右側(cè)),與y軸交于C點(diǎn),二次函數(shù)頂點(diǎn)為M.已知∠OMB=90°.
①求頂點(diǎn)坐標(biāo).
②求二次函數(shù)解析式.
③N為線段BM中點(diǎn),在二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)P,使得∠PON=60°,若存在求出點(diǎn)P坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)中函數(shù)y與自變量x之間部分對(duì)應(yīng)值如下表所示,點(diǎn)在函數(shù)圖象上
x | … | 0 | 1 | 2 | 3 | … |
y | … | m | n | 3 | n | … |
則表格中的m=______;當(dāng)時(shí),和的大小關(guān)系為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰的一個(gè)銳角頂點(diǎn)是上的一個(gè)動(dòng)點(diǎn),,腰與斜邊分別交于點(diǎn),分別過(guò)點(diǎn)作的切線交于點(diǎn),且點(diǎn)恰好是腰上的點(diǎn),連接,若的半徑為4,則的最大值為:( )
A.B.C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郴州市正在創(chuàng)建“全國(guó)文明城市”,某校擬舉辦“創(chuàng)文知識(shí)”搶答賽,欲購(gòu)買A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買A種20件,B種15件,共需380元;如果購(gòu)買A種15件,B種10件,共需280元.
(1)A、B兩種獎(jiǎng)品每件各多少元?
(2)現(xiàn)要購(gòu)買A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)900元,那么A種獎(jiǎng)品最多購(gòu)買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)連接點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,過(guò)點(diǎn)作軸,垂足為點(diǎn)交于點(diǎn)過(guò)點(diǎn)作交軸于點(diǎn),交于點(diǎn).
(1)求三點(diǎn)的坐標(biāo);
(2)試探究在點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn)使得以點(diǎn)為頂點(diǎn)的三角形是等腰三角形,若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)m是點(diǎn)的橫坐標(biāo),請(qǐng)用含的代數(shù)式表示線段的長(zhǎng),并求出為何值時(shí)有最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com