已知∠MON=45°,其內(nèi)部有一點P關(guān)于OM的對稱點是A,關(guān)于ON的對稱點是B,且OP=2cm,則S△AOB=________.

2cm2
分析:根據(jù)軸對稱的性質(zhì)可得OA=OP,OB=OP,∠AOM=∠MOP,∠BON=∠BOP,然后求出∠AOB=90°,從而判斷出△AOB是等腰直角三角形,根據(jù)等腰直角三角形的面積等于直角邊平方的一半列式進行計算即可得解.
解答:解:∵點P關(guān)于OM的對稱點是A,
∴OA=OP,∠AOM=∠MOP,
∵點P關(guān)于ON的對稱點是B,
∴OB=OP,∠BON=∠BOP,
∴OA=OB=OP,∠AOB=∠AOM+∠MOP+∠BON+∠BOP=2(∠MOP+∠NOP)=2∠MON=2×45°=90°,
∴△AOB是等腰直角三角形,
∵OP=2cm,
∴S△AOB=×22=2cm2
故答案為:2cm2
點評:本題考查了軸對稱的性質(zhì),等腰直角三角形的判定,熟記性質(zhì)判定出△AOB是等腰直角三角形是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知∠MON=45°,其內(nèi)部有一點P關(guān)于OM的對稱點是A,關(guān)于ON的對稱點是B,且OP=2cm,則S△AOB=
2cm2
2cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠MON=45°,P是∠MON內(nèi)的一點,點G、H分別是P點關(guān)于MO、NO的對稱點,GH與OM,ON分別相交于點A,B.已知GH=5cm,則△PAB的周長是
5
5
 cm.若連接GO、HO,則△GHO是
等腰直角
等腰直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市江南中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)

(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,)、R(b,),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=∠AOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省無錫市育才中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)

(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,)、R(b,),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=∠AOB.

查看答案和解析>>

同步練習(xí)冊答案