【題目】如圖所示,在第1中,;在邊上任取一點(diǎn),延長,使,得到第2;在邊上任取一點(diǎn),延長,使,得到第3按此做法繼續(xù)下去,則第個三角形中以為頂點(diǎn)的底角度數(shù)是(

A.B.C.D.

【答案】C

【解析】

先根據(jù)等腰三角形的性質(zhì)求出∠BA1C的度數(shù),再根據(jù)三角形外角的性質(zhì)及等腰三角形的性質(zhì)分別求出∠DA2A1,∠EA3A2的度數(shù),找出規(guī)律即可得出第n個三角形中以An為頂點(diǎn)的底角度數(shù).

解:∵在△CBA1中,∠B30°A1BCB,

∴∠BA1C75°

A1A2A1D,∠BA1C是△A1A2D的外角,

∴∠DA2A1BA1C×75°;

同理可得∠EA3A2=(2×75°

∴第n個三角形中以An為頂點(diǎn)的底角度數(shù)是(n1×75°

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用尺規(guī)作的平分線的方法如下:以為圓心,任意長為半徑畫弧交于點(diǎn),,再分別以點(diǎn),為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn),作射線.由作法得,從而得兩角相等.那么這兩個三角形全等的根據(jù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生對籃球、足球、排球、羽毛球、乒乓球這五種球類運(yùn)動的喜愛情況,隨機(jī)抽取一部分學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如圖兩幅不完整的統(tǒng)計(jì)圖:

請根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)共抽取___名學(xué)生進(jìn)行問卷調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖,求出扇形統(tǒng)計(jì)圖中“籃球”所對應(yīng)的圓心角的度數(shù);

(3)該校共有2500名學(xué)生,請估計(jì)全校學(xué)生喜歡足球運(yùn)動的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°AC6cm,BC8cm.動點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒3cm的速度向定點(diǎn)A運(yùn)動,同時動點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒2cm的速度向點(diǎn)B運(yùn)動,運(yùn)動時間為t,連接MN.

(1)若△BMN與△ABC相似,求t的值;

(2)連接AN,CM,若ANCM,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn).點(diǎn)P1次向右平移1個單位長度,向下平移2個單位長度至點(diǎn),接著,第2次向右平移1個單位長度,向上平移3個單位長度至點(diǎn),第3次向右平移1個單位長度,向下平移4個單位長度至點(diǎn),第4次向右平移1個單位長度,向上平移5個單位至點(diǎn),…,按照此規(guī)律,點(diǎn)2019次平移至點(diǎn)的坐標(biāo)是

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O分別交AB、BC于點(diǎn)MN,直線CP是⊙O的切線,且點(diǎn)PAB的延長線上

1若∠P=40°,求∠BCP的度數(shù);

2)若BC=2sinBCP=,求點(diǎn)BAC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn),都在雙曲線()上,分別是軸,軸上的動點(diǎn),當(dāng)四邊形PABQ的周長取最小值時,PQ所在直線的表達(dá)式為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由同樣大小的黑色圓點(diǎn)按照一定規(guī)律所組成的,其中第①個圖形中一共有6個黑色圓點(diǎn)第②個圖形中一共有15個黑色圓點(diǎn),第③個圖形中一共有28個黑色圓點(diǎn),…,按此規(guī)律排列下去,第⑦個圖形中黑色圓點(diǎn)的個數(shù)為(

A.66B.91C.120D.135

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CAAB,DBAB,已知AC=2,AB=6,點(diǎn)P射線BD上一動點(diǎn),以CP為直徑作O,點(diǎn)P運(yùn)動時,若O與線段AB有公共點(diǎn),則BP最大值為

查看答案和解析>>

同步練習(xí)冊答案