【題目】每天鍛煉一小時(shí),健康生活一輩子.為了選拔陽光大課間領(lǐng)操員,學(xué)校組織初中三個(gè)年級推選出來的15名領(lǐng)操員進(jìn)行比賽,成績?nèi)缦卤恚?/span>

成績/

7

8

9

10

人數(shù)/

2

5

4

4

(1)這組數(shù)據(jù)的眾數(shù)是   ,中位數(shù)是   

(2)已知獲得10分的選手中,七、八、九年級分別有1人、2人、1人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級兩名領(lǐng)操員的概率.

【答案】(1)8、9;(2)恰好抽到八年級兩名領(lǐng)操員的概率為

【解析】

(1)根據(jù)中位數(shù)和眾數(shù)的定義分析;(2)用樹狀圖表示所有可能情況,根據(jù)概率的計(jì)算公式可求得結(jié)果.

解:(1)由于8分出現(xiàn)次數(shù)最多,

所以眾數(shù)為8,

中位數(shù)為第8個(gè)數(shù),即中位數(shù)為9,

故答案為:8、9;

(2)畫樹狀圖如下:

由樹狀圖可知,共有12種等可能結(jié)果,其中恰好抽到八年級兩名領(lǐng)操員的有2種結(jié)果,

所以恰好抽到八年級兩名領(lǐng)操員的概率為=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形ABCD折疊使AC重合,折痕交BCE,交ADF

1)求證:四邊形AECF為菱形;

2)若AB=4BC=8,求菱形的邊長;

3)在(2)的條件下折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點(diǎn),且OA=OB=OD.求證:

(1)∠BOD=∠C;

(2)四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過程中,跑步者距起跑線的距離y(單位:m)與跑步時(shí)間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當(dāng)α為多少度時(shí),ABDC?

②當(dāng)旋轉(zhuǎn)到圖③所示位置時(shí),α為多少度?

③連接BD,當(dāng)0°<α≤45°時(shí),探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校八年級某班舉行演講比賽,決定購買,兩種筆記本作為獎(jiǎng)品,已知兩種筆記本的單價(jià)分別是元和.根據(jù)比賽設(shè)獎(jiǎng)情況,需購買筆記本共.

(1)如果購買獎(jiǎng)品共花費(fèi)了元,這兩種筆記本各買了多少本?

(2)根據(jù)比賽設(shè)獎(jiǎng)情況,決定所購買的種筆記本的數(shù)量不少于種筆記本數(shù)量,但又不多于種筆記本數(shù)量的.設(shè)買種筆記本本,買兩種筆記本的總費(fèi)為.

①寫出()關(guān)于()的函數(shù)關(guān)系式,并求出自變量的取值范圍;

②購買這兩種筆記本各多少本時(shí),花費(fèi)最少?最少的費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新定義運(yùn)算“◎”,對于任意有理數(shù)a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投擲一枚印有數(shù)字1~6的質(zhì)地均勻的骰子,將朝上的點(diǎn)數(shù)作為x的值,則代數(shù)式(x﹣3)◎(3+x)的值為非負(fù)數(shù)的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CEABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CEDA的延長線交于點(diǎn)E.連接AC,BE,DO,DOAC交于點(diǎn)F,則下列結(jié)論:

四邊形ACBE是菱形;

②∠ACD=∠BAE;

③AF:BE=2:3;

④S四邊形AFOE:SCOD=2:3.

其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線mn,等腰RtABC中,∠BAC90°,ABAC,點(diǎn)A、點(diǎn)B分別是mn上兩個(gè)動點(diǎn),直角邊AC交直線n于點(diǎn)D,斜邊BC交直線m于點(diǎn)E

1)如圖(1)求證:∠DAO=∠ABO;

2)如圖(2),當(dāng)?shù)妊?/span>RtABC運(yùn)動到使點(diǎn)D恰為AC中點(diǎn)時(shí),連接DE,求證:∠ADB=∠CDE

3)如圖(3),分別以OB、AB為直角邊作等腰直角BOD和等腰直角ABC,連結(jié)CD交直線n于點(diǎn)P,求的值.

查看答案和解析>>

同步練習(xí)冊答案