分析 (1)根據(jù)平行四邊形的性質(zhì)得出AD∥BC,根據(jù)平行線的性質(zhì)得出∠BCF=∠CFD=55°,求出DF=DC,根據(jù)等腰三角形的性質(zhì)得出∠DCF=∠CFD=55°,即可求出答案;
(2)延長EF和CD交于M,根據(jù)平行四邊形的性質(zhì)得出AB∥CD,根據(jù)平行線的性質(zhì)得出∠A=∠FDM,證△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根據(jù)三角形的外角性質(zhì)求出即可;
(3)求出∠ECD=90°,根據(jù)平行線的性質(zhì)得出∠BEC=∠ECD,即可得出答案.
解答 (1)解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵∠CFD=55°,
∴∠BCF=∠CFD=55°,
∵在?ABCD中,AD=2AB,
∴AD=2DC,
∵F為AD的中點,
∴AF=DF,AD=2DF,
∴DF=DC,
∴∠DCF=∠CFD=55°,
∴∠BCD=∠BCF+∠DCF=55°+55°=110°;
(2)證明:延長EF和CD交于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠FDM,
在△EAF和△MDF中,
$\left\{\begin{array}{l}{∠A=∠FDM}\\{AF=DF}\\{∠AFE=∠DFM}\end{array}\right.$,
∴△EAF≌△MDF(ASA),
∴EF=MF,
∵EF=CF,
∴CF=MF,
∴∠FCD=∠M,
∵由(1)知:∠DFC=∠FCD,
∴∠M=∠FCD=∠CFD,
∵∠EFC=∠M+∠FCD=2∠CFD;
(3)解:∵EF=FM=CF,
∴∠ECM=90°,
∵AB∥CD,
∴∠BEC=∠ECM=90°,
∴CE⊥AB.
點評 本題考查了平行四邊形的性質(zhì),平行線的性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定的應(yīng)用,能綜合運用知識點進(jìn)行推理是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
x(單位:kg) | 10 | 20 | 30 |
y1(單位:/元) | 3030 | 3060 | 3090 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com