【題目】如圖,△ABC是以∠C為直角的直角三角形,且BC=1,AC=,圓O是△ABC的外接圓,過△ABC的內(nèi)角∠C作角平分線交AB于點(diǎn)D,交圓O與點(diǎn)E,連接AE,

(1)求AE的長.

(2)求的值.

【答案】(1);(2)

【解析】

(1)連接BE,在RtABC中利用勾股定理可求出AB的長,由CE平分∠ACB結(jié)合圓周角定理可得出∠BAE=BCE=45°,進(jìn)而可得出ABE為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)結(jié)合AB的長度即可求出AE的長度;

(2)連接OE,過點(diǎn)CCFAB于點(diǎn)F,利用面積法可求出CF的長度,利用等腰直角三角形的性質(zhì)可得出OE的長度,再利用三角形的面積公式即可求出的值.

(1)連接BE,如圖1所示.

RtABC中,∠ACB=90°,BC=1,AC=

AB==2.

CE平分∠ACB,

∴∠BCE=ACB=45°

∴∠BAE=BCE=45°.

AB為⊙O的直徑,

∴∠AEB=90°,

∴△ABE為等腰直角三角形,

AE=AB=

(2)連接OE,過點(diǎn)CCFAB于點(diǎn)F,如圖2所示.

∵∠ACB=90°,BC=1,AC=,AB=2,

CF==

∵△ABE為等腰直角三角形,AB=2,

OE=AB=1,OEAB,

==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC是等邊三角形,將直角三角板DEF如圖放置,其中∠F30°,讓ABC在直角三角板的邊EF上向右平移(點(diǎn)C與點(diǎn)F重合時(shí)停止).

1)如圖1,當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),點(diǎn)A恰好落在直角三角板的斜邊DF上,證明:EF2BC

2)在ABC平移過程中,AB,AC分別與三角板斜邊的交點(diǎn)為GH,如圖2,線段EBAH是否始終成立?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】61日起,我國將全面試行居民階梯式電價(jià),某市出臺(tái)了實(shí)施細(xì)則,具體規(guī)定如下:

設(shè)用電量為a度,當(dāng)a≤150時(shí),電價(jià)為現(xiàn)行電價(jià),每度0.51元;當(dāng)150a≤240時(shí),在現(xiàn)行電價(jià)基礎(chǔ)上,每度提高0.05元;當(dāng)a240時(shí),在現(xiàn)行電價(jià)基礎(chǔ)上,每度提高0.30元.設(shè)某戶的月用電量為x(度),電費(fèi)為y(元).則yx之間的函數(shù)關(guān)系的大致圖像是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=ADC=90°,連接AC、BDM、N分別是AC、BD的中點(diǎn),連接MN

(1)求證:MNBD.

(2)若∠DAC=62°,∠BAC=58°,求∠DMB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評(píng)估,將各連鎖店按照評(píng)估成績分成了A、B、C、D四個(gè)等級(jí),繪制了如圖尚不完整的統(tǒng)計(jì)圖表.

評(píng)估成績n(分

評(píng)定等級(jí)

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:

(1求m的值;

(2在扇形統(tǒng)計(jì)圖中,求B等級(jí)所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示

(3從評(píng)估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是A等級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在如圖所示的網(wǎng)格中建立平面直角坐標(biāo)系后,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A11)、B4,2)、C2,4).

1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1

2)借助圖中的網(wǎng)格,請只用直尺(不含刻度)完成以下要求:

①在圖中找一點(diǎn)P,使得PAB、AC的距離相等,且PAPB;

②在x軸上找一點(diǎn)Q,使得△QAB的周長最小,并求出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩地相距3200 m,小王、小李分別從甲、乙兩地同時(shí)出發(fā),相向而行,相遇后兩人立即返回到各自出發(fā)地并停止行進(jìn).已知小李的速度始終是60 m/min,小王在相遇后以勻速返回,但比小李晚回到原地。在整個(gè)行進(jìn)過程中,他們之間的距離ym)與行進(jìn)的時(shí)間tmin)之間的函數(shù)關(guān)系如圖中的折線段ABBCCD所示,請結(jié)合圖像信息解答下列問題:

1)小王返回時(shí)的速度= m/mina ,b

2)當(dāng)t為何值時(shí),小王、小李兩人相距800 m?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過對下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:

(模型呈現(xiàn))

(1)如圖1,,過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn).,得.,可以推理得到.進(jìn)而得到_____,_____.我們把這個(gè)數(shù)學(xué)模型稱為模型或一線三等角模型;

(模型應(yīng)用)

(2)①如圖2,,,,連接,,且于點(diǎn),與直線交于點(diǎn).求證:點(diǎn)的中點(diǎn).

②如圖3,在平面直角坐標(biāo)系中,點(diǎn)為平面內(nèi)任一點(diǎn),點(diǎn)的坐標(biāo)為.是以為斜邊的等腰直角三角形,請直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P CH 的中點(diǎn),則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

同步練習(xí)冊答案