【題目】如圖,MN是正方形ABCD的一條對稱軸,點P是直線MN上的一個動點當PC+PD最小時,∠PCD=( )°.
A.60°
B.45°
C.30°
D.15°
【答案】B
【解析】解:連接BD交MN于P′,如圖,
∵MN是正方形ABCD的一條對稱軸,
∴P′B=P′C,
∴P′C+P′D=P′B+P′D=BD,
∴此時P′C+P′D最短,即點P運動到P′位置時,PC+PD最小,
∵點P′為正方形的對角線的交點,
∴∠P′CD=45°.
故選B.
【考點精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對軸對稱-最短路線問題的理解,了解已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.
科目:初中數(shù)學 來源: 題型:
【題目】在一次課外實踐活動中,同學們要知道校園內(nèi)A,B兩處的距離,但無法直接測得.已知校園內(nèi)A、B、C三點形成的三角形如圖所示,現(xiàn)測得AC=6m,BC=14m,∠CAB=120°,請計算A,B兩處之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】溫度與我們的生活息息相關(guān),你仔細觀察過溫度計嗎?如圖是一個溫度計實物示意圖,左邊的刻度是攝氏溫度(℃),右邊的刻度是華氏溫度(℉),設(shè)攝氏溫度為x(℃),華氏溫度為y(℉),則y是x的一次函數(shù).
(1)仔細觀察圖中數(shù)據(jù),試求出y與x之間的函數(shù)表達式;
(2)當攝氏溫度為零下15℃時,求華氏溫度為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①abc>0;②a+b+c=2;③a<;④b>1.其中正確的結(jié)論是( )
A.①② B.②③ C.③④ D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自2014年12月28日北京公交地鐵調(diào)價以來,人們的出行成本發(fā)生了較大的變化. 小林根據(jù)新聞,將地鐵和公交車的票價繪制成了如下兩個表格。(說明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他類似)
|
|
根據(jù)以上信息回答下列問題:
小林辦了一張市政交通一卡通學生卡,目前乘坐地鐵沒有折扣。
(1)如果小林全程乘坐地鐵的里程為14公里,用他的學生卡需要刷卡交費元;
(2)如果小林全程乘坐公交車的里程為16公里,用他的學生卡需要刷卡交元;
(3)小林用他的學生卡乘坐一段地鐵后換乘公交車,兩者累計里程為12公里。已知他乘坐地鐵平均每公里花費0.4元,乘坐公交車平均每公里花費0.25元,此次行程共花費4.5元。請問小林乘坐地鐵和公交車的里程分別是多少公里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形OABC是長方形,O為原點,點A在x軸上,點C在y軸上且A(10,0),C(0,6),點D在AB邊上,將△CBD沿CD翻折,點B恰好落在OA邊上點E處.
(1)求點E的坐標;
(2)求折痕CD所在直線的函數(shù)表達式;
(3)請你延長直線CD交x軸于點F. ①求△COF的面積;
②在x軸上是否存在點P,使S△OCP= S△COF?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點F是AE的中點,F(xiàn)D與AB相交于點M.
(1)求證:∠FMC=∠FCM;
(2)AD與MC垂直嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,AB=8.
(1)利用尺規(guī),作∠CAB的平分線,交⊙O于點D;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接CD,OD,若AC=CD,求∠B的度數(shù);
(3)在(2)的條件下,OD交BC于點E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結(jié)果保留π和根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com