【題目】如圖,在正方形ABCD的外側(cè),作等邊△ADE,則ABE為()

A.100B.150C.200D.250

【答案】B

【解析】

由四邊形ABCD為正方形,三角形ADE為等比三角形,可得出正方形的四條邊相等,三角形的三邊相等,進而得到AB=AE,且得到∠BAD為直角,∠DAE60°,由∠BAD+DAE求出∠BAE的度數(shù),進而利用等腰三角形的性質(zhì)及三角形的內(nèi)角和定理即可求出∠ABE的度數(shù).

解:∵四邊形ABCD為正方形,ADE為等邊三角形,
AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°
∴∠BAE=BAD+DAE=150°,
又∵AB=AE,
∴∠ABE=180°-150°=15°
故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇果超市用5000元購進一批新品種的蘋果進行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購進該種蘋果,但這次的進價比試銷時每千克多了0.5元,購進蘋果的數(shù)量是試銷時的2倍。

(1)試銷時該品種蘋果的進價是每千克多少元?

(2)如果超市將該品種的蘋果按每千克7元定價出售,當(dāng)大部分蘋果售出后,余下的400千克按定價的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:

4a+b=09a+c3b;8a+7b+2c0當(dāng)x﹣1時,y的值隨x值的增大而增大;當(dāng)函數(shù)值y<0時,自變量x的取值范圍是x<-1x>5.

其中正確的結(jié)論有(  )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20198月,第18屆世界警察和消防員運動會在成都舉行.我們在體育館隨機調(diào)查了部分市民當(dāng)天的觀賽時間,并用得到的數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖,根據(jù)圖中信息完成下列問題:

1)將條形統(tǒng)計圖補充完整;

2)求抽查的市民觀賽時間的眾數(shù)、中位數(shù);

3)求所有被調(diào)查市民的平均觀賽時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a≠0)的圖象如圖所示,則下列結(jié)論中正確的是

A. a0 B. 當(dāng)﹣1x3時,y0

C. c0 D. 當(dāng)x≥1時,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個交點分別為(﹣1,0),(3,0),對于下列結(jié)論:①2a+b=0;②abc0;③a+b+c0;④當(dāng)x1時,yx的增大而減小;其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育文化用品商店購進籃球和排球共200個,進價和售價如下表全部銷售完后共獲利潤2600元.

類別

價格

籃球

排球

進價(元/個)

80

50

售價(元/個)

95

60

1)求商店購進籃球和排球各多少個?

2)王老師在元旦節(jié)這天到該體育文化用品商店為學(xué)校買籃球和排球各若干個(兩種球都買了),商店在他的這筆交易中獲利100元王老師有哪幾種購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】無論m取什么實數(shù),點A(m+1,2m﹣2)都在直線l上.若點B(a,b)是直線l上的動點,則(2a﹣b﹣6)3的值等于____

查看答案和解析>>

同步練習(xí)冊答案