【題目】如圖,菱形ABCD,邊長等于2,點E、F、G、H分別是AB、BC、CD、DA的中點,圖中陰影部分由四個小扇形組成,對于下列判斷中正確的有( )
①空白圖形空白部分的周長=2 ②空白部分的面積=
③四個小扇形的面積和 = ④菱形的面積=4
A 1個 B 2個 C 3個 D 4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題:
(1)解方程:(x+2)(x+3)=2x+16
(2)已知a、b、c均為非零的實數(shù),且滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,過點A作⊙O的切線交BC的延長線于點D.
(1)求證:∠CAD=∠B.
(2)若AC是∠BAD的平分線,sinB=,BC=2.求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,A(4,0),B(0,4),CD是△AOB的中位線.若將△COD繞點O旋轉(zhuǎn),得到△C′OD′,射線AC′與射線BD′的交點為P.
(1)∠APB的度數(shù)是_____°.
(2)在旋轉(zhuǎn)過程中,記P點橫坐標為m,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B的坐標為(3,0),點C的坐標為(0,﹣5).有一寬度為1,長度足夠長的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和點Q,交直線AC于點M和點N,交x軸于點E和點F.
(1)求拋物線的解析式及點A的坐標;
(2)當(dāng)點M和N都在線段AC上時,連接MF,如果sin∠AMF=,求點Q的坐標;
(3)在矩形的平移過程中,是否存在以點P,Q,M,N為頂點的四邊形是平行四邊形,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點P是半徑為5cm的⊙O外的一點,OP= 13cm,PT切⊙O于T點,過點P作PB(PB>PA),設(shè)PA= x,PB= y。
(1)求y與x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個函數(shù)有最大值嗎?若有求出此時△PBT的面積,若沒有,請說明理由;
(3)是否存在這樣的PB,使得,若存在,請求出PA的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長.
(1)如果x=-1是方程的根,試判斷△ABC的形狀,并說明理由;
(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -4 C. - D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準備購買若干臺電腦和打印機,如果購買臺電腦和臺打印機,一共花費元;如果購買臺電腦和臺打印機,一共花費元;
(1)求每臺電腦和每臺打印機的價格分別是多少元?
(2)如果學(xué)校購買電腦和打印機的預(yù)算費用不超過元,并且購買打印機的臺數(shù)要比購買電腦的臺數(shù)多臺,那么該學(xué)校最多能購買多少臺打印機?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com