如圖,在ABCD中,點(diǎn)E,F(xiàn)在對角線AC上,且AE=CF,請你以F為一個端點(diǎn),和圖中已標(biāo)明字母的某一點(diǎn)連成一條新線段,猜想并驗(yàn)證它和圖中已有的某一條線段相等.

以下是小聰和小明的猜想和方案,小聰?shù)淖龇ㄈ缦拢?/P>

連接BF,猜想BF=DE.

ABCD∴AD=BC,AD∥BC,∴∠DAE=∠BCF.

在△ADE和△CBF中

∴△ADE≌△CBF.理由是________.

∴BF=DE.

小明的做法如下:

連接DF,猜想DF=BE,小明的思路是通過說明________≌________得到猜想的結(jié)論.

請思考兩個問題:

(1)

此題還可利用哪兩個三角形全等來說明結(jié)論的正確?

(2)

圖(2)中共有________對全等三角形.

答案:1.SAS,△ABE,△CDF,△DOF≌△BOE等;;2.12;
提示:

結(jié)合圖形有兩種選擇,連接BF或DF,再利用三角形全等來說明猜想是正確的.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時,求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊答案