【題目】“長跑”是中考體育考試項目之一.某中學(xué)為了解九年級學(xué)生“長跑”的情況,隨機(jī)抽取部分九年級學(xué)生,測試其長跑成績(男子1000米,女子800米),按長跑的時間的長短依次分為A,B,C,D四個等級進(jìn)行統(tǒng)計,并繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)在這次調(diào)查中共抽取了  名學(xué)生,扇形統(tǒng)計圖中,D類所對應(yīng)的扇形圓心角大小為

2)所抽取學(xué)生“長跑”測試成績的中位數(shù)會落在 等級;

3)若該校九年級共有900名學(xué)生,請你估計該校C等級的學(xué)生約在多少人?

【答案】145;104°; (2C; (3400人.

【解析】

1A的人數(shù)除以A所占的比例得到總?cè)藬?shù),用360°乘以D所占的比例得到D對應(yīng)的圓心角;(2)算出B的人數(shù),然后利用中位數(shù)概念解題;(3900乘以C所占的比例即可

18÷=45

D對應(yīng)的圓心角為:360°×=104°

2B的人數(shù)為45-8-20-13=4(人)

所以中位數(shù)落在C等級

3900×=400(人)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,將點向右平移6個單位長度,得到點

(1)直接寫出點的坐標(biāo);

(2)若拋物線經(jīng)過點,求的值;

(3)若拋物線與線段有且只有一個公共點時,求拋物線頂點橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(-1,3)、(-4,1)、(-2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是(

A.A14,4),C13,2B.A133),C121

C.A14,3),C123D.A13,4),C12,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在同一平面直角坐標(biāo)系中有函數(shù)y1ax22ax+b,y2=﹣ax+b,其中ab≠0

1)求證:函數(shù)y2的圖象經(jīng)過函數(shù)y1的圖象的頂點;

2)設(shè)函數(shù)y2的圖象與x軸的交點為M,若點M關(guān)于y軸的對稱點M'在函數(shù)y1圖象上,求a,b滿足的關(guān)系式;

3)當(dāng)﹣1x1時,比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?

(3)甲、乙兩個旅行團(tuán)在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點坐標(biāo)為且經(jīng)過點動直線的解析式為

1)求拋物線的解析式;

2)將拋物線向上平移一個單位得到新的拋物線,過點的直線交拋物線于兩點(點位于點的左邊),動直線過點,與拋物線的另外一個交點為點求證:直線恒過一個定點;

3)已知點,且點在動直線上,若是以為頂角的等腰三角形,這樣的等腰三角形有且只存在一個,請求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線上一點,軸上一點,連接,線段繞點逆時針旋轉(zhuǎn)90°至線段,過點作直線軸,垂足為,直線與直線交于點,且,連接,直線與直線交于點,則點的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.

(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;

(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結(jié)論是否仍然成立?請證明你的結(jié)論;

(3)將圖1中的正方形CEFG繞點C旋轉(zhuǎn),使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,有下列5個結(jié)論:①abc0;②ba+c;③當(dāng)x0時,yx的增大而增大;④2c3b;⑤a+bmam+b)(其中m≠1)其中正確的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案