【題目】在平面直角坐標(biāo)系中的位置如圖所示,其中每個(gè)小正方形的邊長為1個(gè)單位長度.按要求作圖:
(1)畫出關(guān)于原點(diǎn)的中心對(duì)稱圖形;
(2)畫出將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°得到的.
(3)設(shè)為邊上一點(diǎn),在上與點(diǎn)對(duì)應(yīng)的點(diǎn)是.則點(diǎn)坐標(biāo)為__________.
【答案】(1)見解析;(2)見解析;(3)(b,-a).
【解析】
(1)利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征寫出A1、B1、C1的坐標(biāo),然后描點(diǎn),順次連接即可;
(2)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對(duì)應(yīng)點(diǎn)A2、B2、C2,從而得到△A2B2C2;
(3)利用A與A2、B與B2、C與C2的坐標(biāo)特征確定對(duì)應(yīng)點(diǎn)的坐標(biāo)變換規(guī)律,從而寫出點(diǎn)P1坐標(biāo).
解:(1)如圖,△A1B1C1即為所作;
(2)如圖,△A2B2C2即為所作;
(3)點(diǎn)P1坐標(biāo)為(b,-a).
故答案為:(b,-a).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)計(jì)算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對(duì)其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值為 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺(tái)移動(dòng)設(shè)備的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個(gè)條件,不正確的是( 。
A. ∠ABD=∠C B. ∠ADB=∠ABC C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(5,)、點(diǎn)B(9,﹣10),與y軸交于點(diǎn)C,點(diǎn)P是直線AC上方拋物線上的一個(gè)動(dòng)點(diǎn);
(1)求拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線BC交于點(diǎn)E,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)∠PCB=90°時(shí),作∠PCB的角平分線,交拋物線于點(diǎn)F.
①求點(diǎn)P和點(diǎn)F的坐標(biāo);
②在直線CF上是否存在點(diǎn)Q,使得以F、P、Q為頂點(diǎn)的三角形與△BCF相似,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(2m+1)x+m﹣3;
(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值;
(2)若函數(shù)圖象在y軸的截距為﹣2,求m的值;
(3)若函數(shù)的圖象平行直線y=3x﹣3,求m的值;
(4)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動(dòng)點(diǎn),E是邊AC上一點(diǎn),若AE=2,則EM+CM的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x+bx+c 與y軸相交于點(diǎn) A(0,3),與x正半軸相交于點(diǎn)B,對(duì)稱軸是直線 x=1
(1)求此拋物線的解析式以及點(diǎn)B的坐標(biāo).
(2)動(dòng)點(diǎn)M 從點(diǎn) O 出發(fā),以每秒2個(gè)單位長度的速度沿 x 軸正方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn) N 從點(diǎn)O出發(fā),以每秒 3 個(gè)單位長度的速度沿y 軸正方向運(yùn)動(dòng),當(dāng)N點(diǎn)到達(dá) A 點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).過動(dòng)點(diǎn) M 作 x 軸的垂線交線段 AB 于點(diǎn)Q,交拋物線于點(diǎn) P,設(shè)運(yùn)動(dòng)的時(shí)間為 t 秒.
①當(dāng) t 為何值時(shí),四邊形 OMPN 為矩形.
②當(dāng) t>0 時(shí),△BOQ 能否為等腰三角形?若能,求出 t 的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,的所對(duì)邊分別是,且,若滿足,則稱為奇異三角形,例如等邊三角形就是奇異三角形.
(1)若,判斷是否為奇異三角形,并說明理由;
(2)若,,求的長;
(3)如圖2,在奇異三角形中,,點(diǎn)是邊上的中點(diǎn),連結(jié),將分割成2個(gè)三角形,其中是奇異三角形,是以為底的等腰三角形,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com