【題目】已知,二次函數的解析式為.
(1)它與軸的交點的坐標為________,頂點坐標為________;
(2)在給定的坐標系中畫出這個二次函數的圖象,并求出拋物線與坐標軸的交點所組成的三角形的面積;
(3)根據圖象直接寫出拋物線在范圍內,函數值的取值范圍是________.
【答案】(1);;(2)函數圖象見解析,;(3).
【解析】
(1)設y=0,求出x的值即它與x軸的交點的橫坐標;把函數的表達式配方即可求出頂點坐標;
(2)由(1)可知拋物線和x軸的交點坐標、頂點坐標,再求出拋物線和y軸的交點即可確定拋物線的位置,根據三角形的面積公式拋物線與坐標軸的交點所組成的三角形的面積;
(3)由函數的圖像可知拋物線在-1<x<2范圍內,對應函數值y的取值范圍.
設y=0,即0=-x2+2x+3,解得:x=3或-1,
∴它與x軸的交點的坐標為(3,0)(-1,0),
∵y=-x2+2x+3=-(x-1)2+4,
∴頂點坐標為(1,4);
故答案為:(3,0)(-1,0);(1,4)
函數圖像如圖所示:
三角形的面積=;
(3)由函數圖形可知:當-1<x<2,函數值y的取值范圍是0<y≤4,
故答案為0<y≤4.
科目:初中數學 來源: 題型:
【題目】如圖,直線y1=2x-2的圖像與y軸交于點A,直線y2=-2x+6的圖像與y軸交于點B,兩者相交于點C.
(1)方程組的解是______;
(2)當y1>0與y2>0同時成立時,x的取值范圍為_____;
(3)求△ABC的面積;
(4)在直線y1=2x-2的圖像上存在異于點C的另一點P,使得△ABC與△ABP的面積相等,請求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:我們把對角線互相垂直的四邊形叫做和美四邊形,對角線交點稱為和美四邊形的中心.
(1)寫出一種你學過的和美四邊形_________;
(2)如圖1,點O是和美四邊形ABCD的中心,E,F,G、H分別是邊AB,BC,CD,DA的中點,連接OE,OF,OG,OH,記四邊形AEOH,BEOF,CGOF,DHOG的面積為,用等式表示的數量關系(無需說明理由).
(3)如圖2,四邊形ABCD是和美四邊形,若AB=3,BC=2,CD=4,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市今年中考理化實驗操作考試,采用學生抽簽方式決定自己的考試內容.規(guī)定每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學試驗(用紙簽D、E、F表示)中各抽取一個實驗操作進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.用列表或畫樹狀圖的方法求小剛抽到物理實驗B和化學實驗F的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校分別于2015年、2016年春季隨機調查相同數量的學生,對學生做家務的情況進行調查(開展情況分為“基本不做”、“有時做”、“常常做”、“每天做”四種),繪制成部分統(tǒng)計圖如下.
請根據圖中信息,解答下列問題:
(1)a=______%,b=______%,“每天做”對應陰影的圓心角為______°;
(2)請你補全條形統(tǒng)計圖;
(3)若該校2016年共有1200名學生,請你估計其中“每天做”家務的學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】京廣高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數是乙隊單獨完成這項工程所需天數的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.4萬元,乙隊每天的施工費用為5.6萬元.工程預算的施工費用為500萬元.為縮短工期并高效完成工程,擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?請給出你的判斷并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 是 的中線, 是線段 上一點(不與點 重合). 交 于點 , ,連結 .
(1)如圖1,當點與重合時,求證:四邊形是平行四邊形
(2)如圖2,當點不與重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長交于點,若,且.
①求的度數;
②當,時,求 的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點在 x 負半軸上,直角頂點 B 在 y 軸上,點 C 在 x 軸上方.
(1)如圖1所示,若A的坐標是(﹣3,0),點 B的坐標是(0,1),求點 C 的坐標;
(2)如圖2,過點 C 作 CD⊥y 軸于 D,請直接寫出線段OA,OD,CD之間等量關系;
(3)如圖3,若 x 軸恰好平分∠BAC,BC與 x 軸交于點 E,過點 C作 CF⊥x 軸于 F,問 CF 與 AE 有怎樣的數量關系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com