【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2),
(1)寫出點A、B的坐標:A(_____,_____)、B(_____,_____);
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,寫出A′、B′、C′三點坐標;
(3)求△ABC的面積。
科目:初中數(shù)學 來源: 題型:
【題目】一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,它交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進行下去,直至得到C7 , 若點P(13,m)在第7段拋物線C7上,則m= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能完全地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,用這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答下列問題:
(1)求出+2的整數(shù)部分和小數(shù)部分;
(2)已知:10+=x+y,其中x是整數(shù),且0<y<1,請你求出(x﹣y)的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,對角線交于點,,點分別是的中點,交于點.有下列4個結(jié)論:①;②;③;④,其中說法正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,多邊形OABCDE的頂點坐標分別是O(0,0)、A(0,6)、B(4,6)、C(4,4)、D(6,4),E(6,0),若直線L經(jīng)過點M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則直線L的函數(shù)表達式是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】黃岡市三運會期間,武穴黃商有一種姚明牌運動裝每件的銷售價y(元)與時間x(周)之間的函數(shù)關(guān)系式對應的點都在如圖所示的圖象上,該圖象從左至右,依次是線段AB、線段BC、線段CD,而這種運動裝每件的進價Z(元)與時間x(周)之間的函數(shù)關(guān)系式為Z= (1≤x≤16且x為整數(shù))
(1)寫出每件的銷售價y(元)與時間x(周)之間的函數(shù)關(guān)系式;
(2)設(shè)每件運動裝銷售利潤為w,寫出w(元)與時間x(周)之間的函數(shù)關(guān)系式;
(3)求該運動裝第幾周出銷時,每件運動裝的銷售利潤最大?最大利潤為多少?(6分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD//AB,BD平分∠ABC,CE平分∠DCF,∠ACE=90°
(1)請問BD和CE是否平行?請你說明理由;
(2)AC和BD有何位置關(guān)系?請你說明判斷的理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與雙曲線相交于A(2,1)、B兩點.
(1)求m及k的值;
(2)不解關(guān)于x、y的方程組直接寫出點B的坐標;
(3)直線經(jīng)過點B嗎?請說明理由.
【答案】(1)m=-1,k=2;(2)(-1,-2);(3)經(jīng)過
【解析】試題分析:(1)把A(2,1)分別代入直線與雙曲線即可求得結(jié)果;
(2)根據(jù)函數(shù)圖象的特征寫出兩個圖象的交點坐標即可;
(3)把x=-1,m=-1代入即可求得y的值,從而作出判斷.
(1)把A(2,1)分別代入直線與雙曲線的解析式得m=-1,k=2;
(2)由題意得B的坐標(-1,-2);
(3)當x=-1,m=-1代入得y=-2×(-1)+4×(-1)=2-4=-2
所以直線經(jīng)過點B(-1,-2).
考點:反比例函數(shù)的性質(zhì)
點評:反比例函數(shù)的性質(zhì)是初中數(shù)學的重點,是中考常見題,一般難度不大,需熟練掌握.
【題型】解答題
【結(jié)束】
20
【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣球,當溫度不變時,氣球內(nèi)氣球的壓力p(千帕)是氣球的體積V(米2)的反比例函數(shù),其圖象如圖所示(千帕是一種壓強單位)
(1)寫出這個函數(shù)的解析式;
(2)當氣球的體積為0.8立方米時,氣球內(nèi)的氣壓是多少千帕;
(3)當氣球內(nèi)的氣壓大于144千帕時,氣球?qū)⒈,為了安全起見,氣球的體積應不小于多少立方米。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給定關(guān)于 的二次函數(shù) ,
學生甲:當 時,拋物線與 軸只有一個交點,因此當拋物線與 軸只有一個交點時, 的值為3;
學生乙:如果拋物線在 軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學生甲、乙的觀點是否正確,并說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com