在任意四邊形、平行四邊形、矩形、菱形、正方形、任意梯形、等腰梯形、直角梯形中,中心對稱圖形的有()


  1. A.
    2個
  2. B.
    3個
  3. C.
    4個
  4. D.
    5個
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

操作示例
如圖1,△ABC中,AD為BC邊上的中線,則S△ABD=S△ADC
實踐探究
(1)在圖2中,E、F分別為矩形ABCD的邊AD、BC的中點,則S和S矩形ABCD之間滿足的關系式為
 

精英家教網(wǎng)
(2)在圖3中,E、F分別為平行四邊形ABCD的邊AD、BC的中點,則S和S平行四邊形ABCD之間滿足的關系式為
 
;
(3)在圖4中,E、F分別為任意四邊形ABCD的邊AD、BC的中點,則S和S四邊形ABCD之間滿足的關系式為
 

解決問題:
(4)在圖5中,E、G、F、H分別為任意四邊形ABCD的邊AD、AB、BC、CD的中點,并且圖中陰影部分的面積為20平方米,求圖中四個小三角形的面積和,即S1+S2+S3+S4=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作1:如圖1,一三角形紙片ABC,分別取AB、AC的中點D、E,連接DE,沿DE將紙片剪開,并將其中的△ADE紙片繞點E旋轉180°后可拼合(無重疊無縫隙)成平行四邊形紙片BCFD.
操作2:如圖2,一平行四邊形紙片ABCD,E、F、G、H分別是AB、BC、CD、AD邊的中點,沿EF剪開并將其中的△BFE紙片繞點E旋轉180°到△AF1E位置;沿HG剪開并將其中的△DGH紙片繞點H旋轉180°到△AG1H位置;沿FG剪開并將△CFG紙片放置于△AF1G1的位置,此時四張紙片恰好拼合(無重疊無縫隙)成四邊形FF1G1G.則四邊形FF1G1G的形狀是
 

精英家教網(wǎng)
操作、思考并探究:
(1)如圖3,如果四邊形ABCD是任意四邊形(不是梯形或平行四邊形)的紙片,E、F、G、H分別是AB、BC、CD、AD的中點.依次沿EF、FG、GH、HE剪開得到四邊形紙片EFGH.請判斷四邊形紙片EFGH的形狀,并說明理由.
(2)你能將上述四邊形紙片ABCD經(jīng)過恰當?shù)丶羟泻笃春希o重疊無縫隙)成一個平行四邊形紙片?請在圖4上畫出對應的示意圖.
精英家教網(wǎng)
(3)如圖5,E、F、G、H分別是四邊形ABCD各邊的中點,若△AEH、△BEF、△CFG、△DGH的面積分別為S1、S2、S3、S4,且S1=2,S3=5,則四邊形ABCD是面積是
 
.(不要求說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•蘇州)在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.
(1)從A、D、E、F四個點中任意取一點,以所取的這一點及點B、C為頂點畫三角形,則所畫三角形是等腰三角形的概率是
1
4
1
4
;
(2)從A、D、E、F四個點中先后任意取兩個不同的點,以所取的這兩點及點B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率是
1
3
1
3
(用樹狀圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

巳知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點A、B,與y軸交于點C.點D是拋物線的頂點.
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點O的對應點0'恰好落在該拋物線的 對稱軸上,求實數(shù)a的值;
(2)如圖②,在正方形EFGH中,點E、F的坐標分別是(4,4)、(4,3),邊HG位于邊EF的 右側.小林同學經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點P是邊EH或邊HG上的任意一點,則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應相等 (即這四條線段不能構成平行四邊形).“若點P是邊EF或邊FG上的任意一點,剛才的結論是否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當點P在拋物線對稱軸上時,設點P的縱坐標t是大于3的常數(shù),試問:是否存在一個正數(shù)a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應相等 (即這四條線段能構成平行四邊形)?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省溫州市第一次學業(yè)模擬考試數(shù)學試卷(解析版) 題型:填空題

在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.

(1)從A、D、E、F四個點中任意取一點,以所取的這一點及點B、C為頂點畫三角形,則所畫三角形是等腰三角形的概率是 ________ ;

(2)從A、D、E、F四個點中先后任意取兩個不同的點,以所取的這兩點及點B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表法求解).

 

查看答案和解析>>

同步練習冊答案