【題目】畫圖(要求:以下操作均只使用無刻度的直尺)

1)在直角坐標(biāo)系中我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).如圖1中點(diǎn)A12)、B34),在圖1中第一象限內(nèi)找出所有的整點(diǎn)P(圖上標(biāo)為P1P2),使得點(diǎn)P橫、縱坐標(biāo)的平方和等于20

2)如圖2,是大小相等的邊長(zhǎng)為1的正方形構(gòu)成的網(wǎng)格,A、B、C、D均為格點(diǎn).請(qǐng)?jiān)诰段AD上找一點(diǎn)P,并連結(jié)BP使得直線BP將四邊形ABCD的面積分為12兩部分,在圖中畫出線段BP,并簡(jiǎn)要說明你的畫圖方法.

【答案】1)見解析;(2)見解析.

【解析】

1)設(shè)Px,y),由題意得x2+y2=20,求出整數(shù)即可解決問題;(2)連接BD,先求出△ABD的面積與四邊形ABCD的面積,由BQ使得直線BQ將四邊形ABCD的面積分為12兩部分得出△ABP的面積為,得出即SABD=SABD,也是APPD=53,所以連接CE,交AD于點(diǎn)P,連接BP,BP 所求.

解:(1)設(shè)Px,y),由題意得x2+y2=20,

x=4,y=2,或者x=2,y=4.

在直角坐標(biāo)系表示為:

2)如圖,連接BD,則△ABD的面積=△ADF的面積+△BDF的面積=4,

四邊形ABCD的面積=△ACD的面積+△ACB的面積=+×5×2=,

∵直線BP將四邊形ABCD的面積分為12兩部分,

∴△ABP的面積=×=,即SABD=SABD,∴APPD=53,

如圖,連接CE,交AD于點(diǎn)P,連接BP,則,

∴線段BP即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB=10,AC=6,ACB的平分線交⊙O于點(diǎn)D,過點(diǎn)DDEABCA延長(zhǎng)線于點(diǎn)E,連接AD,BD.

(1)ABD的面積是________:

(2)求證:DE是⊙O的切線:

(3)求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,米,米,中點(diǎn),動(dòng)點(diǎn)2/秒的速度從出發(fā),沿著的邊,按照AEDA順序環(huán)行一周,設(shè)出發(fā)經(jīng)過秒后,的面積為(平方米),求間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明袋子中有1個(gè)紅球和n個(gè)白球,這些球除顏色外無其他差別.

1)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回.大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.25,求n的值.

2)在(1)的條件下,從袋中隨機(jī)摸出兩個(gè)球,求兩個(gè)球顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象如圖所示,根據(jù)圖象信息,下列說法:①兩人相遇前,甲速度一直小于乙速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的說法是_________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點(diǎn),AE是O的直徑,點(diǎn)C為O上一點(diǎn),且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長(zhǎng)線與AC的延長(zhǎng)線的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;

(3)若AB=3,AE=,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案