【題目】如圖,矩形OABC的邊OCy軸上,邊OAx軸上,C點(diǎn)坐標(biāo)為(0,3),點(diǎn)D是線段OA的一個(gè)動(dòng)點(diǎn),連接CD,以CD為邊作矩形CDEF,使邊EF過點(diǎn)B,已知所作矩形CDEF的面積為12,連接OF,則在點(diǎn)D的運(yùn)動(dòng)過程中,線段OF的最大值為__

【答案】.

【解析】

連接BD,由矩形的性質(zhì)得出S矩形CDEF=2SCBD=12S矩形OABC=2SCBD,得出S矩形OABC=12,可求OA=4=BC,由∠CFB=90°,C、B均為定點(diǎn),F可以看作是在以BC為直徑的圓上,取BC的中點(diǎn)M,則OF的最大值=OM+BC=

連接BD,取BC中點(diǎn)M,連接OM,FM,

S矩形CDEF2SCBD12,S矩形OABC2SCBD,

S矩形OABC12,

C點(diǎn)坐標(biāo)為(0,3),

OC3,

BC4,

∵∠CFB90°,C、B均為定點(diǎn),

F可以看作是在以BC為直徑的圓上,且點(diǎn)MBC中點(diǎn),

MFBCCM2,OM

當(dāng)點(diǎn)O,點(diǎn)F,點(diǎn)M三點(diǎn)共線時(shí),OF的值最大.

OF的最大值=OM+BC,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今有三部自動(dòng)換幣機(jī),其中甲機(jī)總是將一枚硬幣換成2枚其他硬幣;乙機(jī)總是將一枚硬幣換成4枚其他硬幣;丙機(jī)總是將一枚硬幣換面10枚其他硬幣.某人共進(jìn)行了12次換幣,便將一枚硬幣換成了81枚.試問他在丙機(jī)上換了_____次?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)分別以直線ACBC為軸,把△ABC旋轉(zhuǎn)一周,得到兩個(gè)不同的圓錐,求這兩個(gè)圓錐的側(cè)面積;

(2)以直線AB為軸,把△ABC旋轉(zhuǎn)一周,求所得幾何體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境

在綜合與實(shí)踐課上,老師讓同學(xué)們以兩條平行線ABCD和一塊含60°角的直角三角尺EFG(EFG90°,∠EGF60°)”為主題開展數(shù)學(xué)活動(dòng).

操作發(fā)現(xiàn)

(1)如圖(1),小明把三角尺的60°角的頂點(diǎn)G放在CD上,若∠221,求∠1的度數(shù);

(2)如圖(2),小穎把三角尺的兩個(gè)銳角的頂點(diǎn)EG分別放在ABCD上,請(qǐng)你探索并說明∠AEF與∠FGC之間的數(shù)量關(guān)系;

結(jié)論應(yīng)用

(3)如圖(3),小亮把三角尺的直角頂點(diǎn)F放在CD上,30°角的頂點(diǎn)E落在AB上.若∠AEGα,則∠CFG等于______(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開后,折痕DF分別交AB、AC于點(diǎn)E、G,連解FG,下列結(jié)論:(1)∠AGD112.5°;(2EAB中點(diǎn);(3SAGDSOCD;(4)正邊形AEFG是菱形;(5BE2OG,其中正確結(jié)論的個(gè)是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用同樣規(guī)格的黑、白兩種顏色的正方形瓷磚按下圖所示的方式鋪寬為1.5米的小路.

1)鋪第5個(gè)圖形用黑色正方形瓷磚 塊;

2)按照此方式鋪下去,鋪第 n 個(gè)圖形用黑色正方形瓷磚 塊;(用含 n的代數(shù)式表示)

3)若黑、白兩種顏色的瓷磚規(guī)格都為( 0.50.5米),且黑色正方形瓷磚每塊價(jià)格 25 元,白色正方形瓷磚每塊價(jià)格30元,若按照此方式恰好鋪滿該小路某一段(該段小路的總面積為 18.75 平方米),求該段小路所需瓷磚的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料.

在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問題:

已知:如圖①,在△ABC中,∠A=90°.

圖①

求作:⊙P,使得點(diǎn)P在邊AC上,且⊙P與AB,BC都相切.

小軒的主要作法如下:

如圖②,

圖②

(1)作∠ABC的平分線BF,與AC交于點(diǎn)P;

(2)以P為圓心,AP長為半徑作⊙P,則⊙P即為所求.

老師說:“小軒的作法正確.”

請(qǐng)回答:⊙P與BC相切的依據(jù)是 ____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,以為圓心,長為半徑畫弧,分別交、兩點(diǎn),連接、,則除外,圖中是等腰三角形的還有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案