一個扇形如圖所示,其半徑為30cm,圓心角為120°,用它做成圓錐的側(cè)面.
(1)求圓錐的底面半徑;
(2)求與圓錐同底等高的圓柱的體積.
分析:(1)利用弧長公式易得扇形的弧長,除以2π即為圓錐的底面半徑;
(2)首先利用勾股定理求得圓錐的高,然后利用圓柱的體積計(jì)算方法求得其體積即可.
解答:解:(1)扇形的弧長為:
120π×30
180
=20πcm,
∴圓錐底面半徑為20π÷2π=10cm;

(2)由勾股定理得:圓錐的高為:
302-102
=20
2
cm,
∴圓錐的體積為:102π×20
2
=2000
2
πcm2
點(diǎn)評:本題主要考查了圓錐的計(jì)算,用到的知識點(diǎn)為:弧長=圓錐底面周長;底面半徑=底面周長÷2π.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1是某公司的圖標(biāo),它是由一個扇環(huán)形和圓組成,其設(shè)計(jì)方法如圖2所示,ABCD是正方形,⊙O是該正方形的內(nèi)切圓,E為切點(diǎn),以B為圓心,分別以BA、BE為半徑畫扇形,得到如圖所示的扇環(huán)形,圖1中的圓與扇環(huán)的面積比為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示的轉(zhuǎn)盤,分成三個相同的扇形,指針位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,其中的某個扇形會恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個數(shù)(指針指向兩個扇形的交線時,當(dāng)作指向右邊的扇形).
(1)求事件“轉(zhuǎn)動一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫出此情境下一個不可能發(fā)生的事件;
(3)用樹狀圖或列表法,求事件“轉(zhuǎn)動兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對值相等”發(fā)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大慶)如圖所示,將一個圓盤四等分,并把四個區(qū)域分別標(biāo)上I、Ⅱ、Ⅲ、Ⅳ,只有區(qū)域I為感應(yīng)區(qū)域,中心角為60°的扇形AOB繞點(diǎn)0轉(zhuǎn)動,在其半徑OA上裝有帶指示燈的感應(yīng)裝置,當(dāng)扇形AOB與區(qū)域I有重疊(原點(diǎn)除外)的部分時,指示燈會發(fā)光,否則不發(fā)光,當(dāng)扇形AOB任意轉(zhuǎn)動時,指示燈發(fā)光的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在電腦課上,小明將圖中的扇形分割,圖①是一個扇形AOB,將其作如下劃分:
第一次劃分:如圖②所示,以O(shè)A的一半OA1為半徑畫弧,再作LAOB的平分線,得到扇形的總數(shù)為6個,分別為扇形AOB、扇形AOC、扇形COB、扇形A1OB1,扇形A1OC1,扇形C1OB1;
第二次劃分:如圖③所示,在扇形C1OB1中,按上述劃分方式繼續(xù)劃分,可以得到扇形的總數(shù)為11個;
第三次劃分:如圖④所示;…
依次劃分下去.
(1)根據(jù)題意,完成下表:
劃分次數(shù) 扇形總個數(shù)
1 6
2 11
3
4
n
(2)根據(jù)上表,請你判斷按上述劃分方式,能否得到扇形的總數(shù)為2013個?為什么?

查看答案和解析>>

同步練習(xí)冊答案