【題目】在數(shù)學活動課上,研究用正多邊形鑲嵌平面.請解決以下問題:
(1)用一種正多邊形鑲嵌平面
例如,用 6 個全等的正三角形鑲嵌平面,擺放方案如圖所示:
若用 m 個全等的正 n 邊形鑲嵌平面,求出 m,n 應滿足的關系式;
(2)用兩種正多邊形鑲嵌平面
若這兩種正多邊形分別是邊長相等的正三角形和正方形,請畫出兩種不同的擺放方案;
(3)用多種正多邊形鑲嵌平面
若鑲嵌時每個頂點處的正多邊形有 n 個,設這 n 個正多邊形的邊數(shù)分別為 x1,x2,…,xn,求出 x1,x2,…,xn 應滿足的關系式.(用含 n 的式子表示)
科目:初中數(shù)學 來源: 題型:
【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個數(shù)(從左往右數(shù)),如A7=(2,3),則A89=( )
A.(6,7)
B.(7,8)
C.(7,9)
D.(6,9)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為4的大正方形ABCD內有一個邊長為1的小正方形CEFG,動點P以每秒1cm的速度從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B停止(不含點A和點B).設△ABP的面積為S,點P的運動時間為t.
(1)小穎通過認真的觀察分析,得出了一個正確的結論:當點P在線段DE上運動時,存在著“同底等高”的現(xiàn)象,因此當點P在線段DE上運動時△ABP的面積S始終不發(fā)生變化.
問:在點P的運動過程中,還存在類似的現(xiàn)象嗎?若存在,請說出P的位置;若不存在,請說明理由.
(2)在點P的運動過程中△ABP的面積S是否存在最大值?若存在,請求出最大面積;若不存在,請說明理由.
(3)請寫出S與t之間的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直徑AE平分弦CD,交CD于點G,EF∥CD,交AD的延長線于F,AP⊥AC交CD的延長線于點P.
(1)求證:EF是⊙O的切線;
(2)若AC=2,PD= CD,求tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把四張大小相同的長方形卡片(如圖①)按圖②、圖③兩種放法放在一個底面為長方形(長比寬多6)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖②中陰影部分的周長為C2,圖③中陰影部分的周長為C3,則C2-C3=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,共頂點的兩個三角形△ABC,△AB′C′,若 AB=AB′,AC=AC′,且∠BAC+∠B′AC′=180°,我們稱△ABC 與△AB′C′互為“頂補三角形”.
(1)已知△ABC 與△ADE 互為“頂補三角形”,AF 是△ABC 的中線.
①如圖 2,若△ADE 為等邊三角形時,求證:DE=2AF;
②如圖 3,若△ADE 為任意三角形時,上述結論是否仍然成立?請說明理由.
(2)如圖4,四邊形 ABCD 中,∠B+∠C=90°.在平面內是否存在點 P,使△PAD 與△PBC 互為“頂補三角形”, 若存在,請畫出圖形,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,建筑工人砌墻時,經常在兩個墻腳的位置分別插一根木樁,然后拉一條直的參照線,其運用到的數(shù)學原理是( )
A.兩點之間,線段最短
B.兩點確定一條直線
C.垂線段最短
D.過一點有且只有一條直線和已知直線平行
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4,點E是BC的中點,連接DE,DF⊥DE交BA的延長線于點F.連接EF、AC,DE、EF分別與C交于點P、Q,則PQ=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a#0)的圖象如圖所示,給出以下四個結論:
①abc=0,②a+b+c>0,③b=3a, ④4ac—b2<0;其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com