【題目】如圖(1),將兩塊直角三角板的直角頂點C疊放在一起.
(1)試判斷∠ACE與∠BCD的大小關(guān)系,并說明理由;
(2)若∠DCE=30°,求∠ACB的度數(shù);
(3)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由;
(4)若改變其中一個三角板的位置,如圖(2),則第(3)小題的結(jié)論還成立嗎?(不需說明理由)
【答案】
(1)解:∠ACE=∠BCD,理由如下:
∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,
∴∠ACE=∠BCD;
(2)解:若∠DCE=30°,∠ACD=90°,
∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,
∵∠BCE=90°且∠ACB=∠ACE+∠BCE,
∠ACB=90°+60°=150°
(3)解:猜想∠ACB+∠DCE=180°.理由如下:
∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,
∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°
(4)解:成立.
【解析】(1)根據(jù)余角的性質(zhì),可得答案;(2)根據(jù)余角的定義,可得∠ACE,根據(jù)角的和差,可得答案;(3)根據(jù)角的和差,可得答案;(4)根據(jù)角的和差,可得答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算,正確的是( )
A. 3+2ab=5ab B. 5xy﹣y=5x
C. ﹣5m2n+5nm2=0 D. x3﹣x=x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,若AB=4,E是AD邊上一點(點E與點A、D不重合),BE的中垂線交AB于點M,交DC于點N,設(shè)AE=x,BM=y,則y與x的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條直線上任取一點A,截取AB=20cm,再截取AC=18cm,M、N分別是AB、AC的中點,則M、N兩點之間的距離為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家承包的果園,前年水果產(chǎn)量為50噸,后來改進了種植技術(shù),今年的總產(chǎn)量是60.5噸,小明家去年,今年平均每年的糧食產(chǎn)量增長率是( 。
A.5%
B.10%
C.15%
D.20%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種品牌服裝平均每天銷售20件,每件盈利44元.銷售過程中發(fā)現(xiàn),在每件降價不超過10元的情況下,若每件降價1元,每天可多售5件.
(1)若每件降價2元,則每天售出 件,共盈利 元;
(2)如果銷售這種品牌的服裝每天要盈利2380元,求每件應(yīng)降價多少元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com