【題目】如圖,矩形ABCD中,AD=4,∠CAB=30°,點(diǎn)P是線段AC上的動(dòng)點(diǎn),點(diǎn)Q是線段CD上的動(dòng)點(diǎn),則AQ+QP的最小值是

【答案】4
【解析】解:以CD為軸,將△ACD往上翻轉(zhuǎn)180°,如圖,

過(guò)點(diǎn)A作AE⊥A′C于E點(diǎn),AE交CD于F點(diǎn),

當(dāng)Q與F點(diǎn)重合,P′與E點(diǎn)重合時(shí),AQ+QP=AF+EF=AE最短(直線外一點(diǎn)到這條直線中,垂線段最短),

∵矩形ABCD中,AD=4,∠CAB=30°,

∴∠A′CD=∠ACD=∠CAB=30°,3

∴∠A′CA=60°,

又∵AC=A′C,

∴△A′CA為等邊三角形,且A′A=2AD=8,

AE=A′Asin∠A′CA=8× =4

故答案為:4

這是一道雙動(dòng)點(diǎn)問(wèn)題,以CD為軸,將ACD往上翻轉(zhuǎn)180°,由已知矩形ABCD中,∠CAB=30°,可以得到∠A′AC=60°,易證得△A′AC是等邊三角形,求出邊A′C上的高,由兩點(diǎn)之間線段最短即可得出結(jié)論。也可以作點(diǎn)A關(guān)于點(diǎn)D的中心對(duì)稱點(diǎn)A′,過(guò)點(diǎn)A′作AC的垂線即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題:
(1)計(jì)算: (-2)0+|2﹣|+2sin60° ;
(2)解分式方程: =-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中考體育測(cè)試前,某區(qū)教育局為了了解選報(bào)引體向上的初三男生的成績(jī)情況,隨機(jī)抽測(cè)了本區(qū)部分選報(bào)引體向上項(xiàng)目的初三男生的成績(jī),并將測(cè)試得到的成績(jī)繪成了下面兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)圖中的信息,解答下列問(wèn)題:
(1)寫出扇形圖中a=%,并補(bǔ)全條形圖;
(2)在這次抽測(cè)中,測(cè)試成績(jī)的眾數(shù)和中位數(shù)分別是 個(gè)、個(gè).
(3)該區(qū)體育中考選報(bào)引體向上的男生共有1800人,如果體育中考引體向上達(dá)6個(gè)以上(含6個(gè))得滿分,請(qǐng)你估計(jì)該區(qū)體育中考中選報(bào)引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x、y的二元一次方程組 的解滿足x+y>1,則實(shí)數(shù)k的取值范圍是( )
A.k<0
B.k<﹣1
C.k<﹣2
D.k<﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一圓錐的左視圖,根據(jù)圖中所標(biāo)數(shù)據(jù),圓錐側(cè)面展開(kāi)圖的扇形圓心角的大小為( )

A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O,A,BC,D,E的坐標(biāo)分別為(0,0)(0,5),(45),(4,2),(9,2),(9,0).

1)求這個(gè)圖形的周長(zhǎng);

2)求這個(gè)圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠對(duì)零件進(jìn)行檢測(cè),引進(jìn)了檢測(cè)機(jī)器.已知一臺(tái)檢測(cè)機(jī)的工作效率相當(dāng)于一名檢測(cè)員的20倍.若用這臺(tái)檢測(cè)機(jī)檢測(cè)900個(gè)零件要比15名檢測(cè)員檢測(cè)這些零件少3小時(shí).
(1)求一臺(tái)零件檢測(cè)機(jī)每小時(shí)檢測(cè)零件多少個(gè)?
(2)現(xiàn)有一項(xiàng)零件檢測(cè)任務(wù),要求不超過(guò)7小時(shí)檢測(cè)完成3450個(gè)零件.該廠調(diào)配了2臺(tái)檢測(cè)機(jī)和30名檢測(cè)員,工作3小時(shí)后又調(diào)配了一些檢測(cè)機(jī)進(jìn)行支援,則該廠至少再調(diào)配幾臺(tái)檢測(cè)機(jī)才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC為邊長(zhǎng)為6的等邊三角形,D,E分別在邊BC,AC上,且CD=CE=x,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF,CF.

(1)求證:△AEF為等邊三角形;
(2)求證:四邊形ABDF是平行四邊形;
(3)記△CEF的面積為S,
①求S與x的函數(shù)關(guān)系式;
②當(dāng)S有最大值時(shí),判斷CF與BC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)碼專營(yíng)店銷售甲、乙兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

進(jìn)價(jià)(元/部)

4300

3600

售價(jià)(元/部)

4800

4200

1)該店銷售記錄顯示.三月份銷售甲、乙兩種手機(jī)共17部,且銷售甲種手機(jī)的利潤(rùn)恰好是銷售乙種手機(jī)利潤(rùn)的2倍,求該店三月份售出甲種手機(jī)和乙種手機(jī)各多少部?

2)根據(jù)市場(chǎng)調(diào)研,該店四月份計(jì)劃購(gòu)進(jìn)這兩種手機(jī)共20部,要求購(gòu)進(jìn)乙種手機(jī)數(shù)不超過(guò)甲種手機(jī)數(shù)的,而用于購(gòu)買這兩種手機(jī)的資金低于81500元,請(qǐng)通過(guò)計(jì)算設(shè)計(jì)所有可能的進(jìn)貨方案.

3)在(2)的條件下,該店打算將四月份按計(jì)劃購(gòu)進(jìn)的20部手機(jī)全部售出后,所獲得利潤(rùn)的30%用于購(gòu)買A,B兩款教學(xué)儀器捐贈(zèng)給某希望小學(xué).已知購(gòu)買A儀器每臺(tái)300元,購(gòu)買B儀器每臺(tái)570元,且所捐的錢恰好用完,試問(wèn)該店捐贈(zèng)A,B兩款儀器一共多少臺(tái)?(直接寫出所有可能的結(jié)果即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案