【題目】小夏同學(xué)從家到學(xué)校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:
公交車用時 頻數(shù) 公交車路線 | 總計 | ||||
59 | 151 | 166 | 124 | 500 | |
43 | 57 | 149 | 251 | 500 |
據(jù)此估計,早高峰期間,乘坐線路“用時不超過35分鐘”的概率為__________,若要在40分鐘之內(nèi)到達學(xué)校,應(yīng)盡量選擇乘坐__________(填或)線路.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于點、(左右),與軸交于點,且.
(1)求拋物線的解析式;
(2)如圖2,點在第一象限拋物線上,連接,若,求點的坐標(biāo);
(3)在(2)的條件下,如圖3,過點作軸,線段經(jīng)過點,與拋物線交于點,連接、,,點在線段上,連接,交于點,點在上,連接,交于點,若,,,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校教務(wù)處為了解九年級學(xué)生“居家學(xué)習(xí)”的學(xué)習(xí)能力,隨機抽取該年級部分學(xué)生,對他們的學(xué)習(xí)能力進行了統(tǒng)計,其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖(其中學(xué)習(xí)能力指數(shù)級別“1”級,代表學(xué)習(xí)能力很強;“2”級,代表學(xué)習(xí)能力較強;“3”級,代表學(xué)習(xí)能力一般;“4“級,代表學(xué)習(xí)能力較弱)請結(jié)合圖中相關(guān)數(shù)據(jù)回答問題.
(1)本次抽查的學(xué)生人數(shù) 人,并將條形統(tǒng)計圖補充完整;
(2)本次抽查學(xué)生“居家學(xué)習(xí)”能力指數(shù)級別的眾數(shù)為 級,中位數(shù)為 級.
(3)已知學(xué)習(xí)能力很強的學(xué)生中只有1名女生,現(xiàn)從中隨機抽取兩人寫有關(guān)“居家學(xué)習(xí)”的報告,請用列表或畫樹狀圖的方法求所抽查的兩位學(xué)生中恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點A、D在x軸的負(fù)半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上,正方形ADEF的面積為4,且BF=2AF,則k值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于⊙P及一個矩形給出如下定義:如果⊙P上存在到此矩形四個頂點距離都相等的點,那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的頂點A的坐標(biāo)為(,),頂點C、D在x軸上,且OC=OD.
(1)當(dāng)⊙P的半徑為4時,
①在P1(,),P2(,),P3(,)中可以成為矩形ABCD的“等距圓”的圓心的是 ;
②如果點P在直線上,且⊙P是矩形ABCD的“等距圓”,求點P的坐標(biāo);
(2)已知點P在軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒有公共點,直接寫出點P的縱坐標(biāo)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點,其對稱軸與軸交于點.
(1)求點,的坐標(biāo);
(2)設(shè)直線與直線關(guān)于該拋物線的對稱軸對稱,
①求直線的解析式
②若該拋物線在這一段位于直線的上方,并且在這一段位于直線的下方,求該拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場甲、乙、丙三名業(yè)務(wù)員2018年前5個月的銷售額(單位:萬元)如下表:
月份 銷售額 人員 | 第1月 | 第2月 | 第3月 | 第4月 | 第5月 |
甲 | 6 | 9 | 10 | 8 | 8 |
乙 | 5 | 7 | 8 | 9 | 9 |
丙 | 5 | 9 | 10 | 5 | 11 |
(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:
統(tǒng)計值 數(shù)值 人員 | 平均數(shù)(萬元) | 眾數(shù)(萬元) | 中位數(shù)(萬元) | 方差 |
甲 | 8 | 8 | 1.76 | |
乙 | 7.6 | 8 | 2.24 | |
丙 | 8 | 5 |
(2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形的三個頂點分別落在反比例函數(shù)與的圖象上,并且底邊經(jīng)過原點,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)由極點、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點O稱為極點;從點O出發(fā)引一條射線Ox稱為極軸;線段OM的長度稱為極徑.點M的極坐標(biāo)就可以用線段OM的長度以及從Ox轉(zhuǎn)動到OM的角度(規(guī)定逆時針方向轉(zhuǎn)動角度為正)來確定,即M(4,30°)或M(4,-330°)或M(4,390°)等,則下列說法錯誤的是( ).
A.點M關(guān)于x軸對稱點M1的極坐標(biāo)可以表示為M1(4,-30°)
B.點M關(guān)于原點O中心對稱點M2的極坐標(biāo)可以表示為M2(4,570°)
C.以極軸Ox所在直線為x軸建立如圖所示的平面直角坐標(biāo)系,則極坐標(biāo)M(4,30°)轉(zhuǎn)化為平面直角坐標(biāo)的坐標(biāo)為M(2,2)
D.把平面直角坐標(biāo)系中的點N(-4,4)轉(zhuǎn)化為極坐標(biāo),可表示為N(,135°)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com