【題目】如圖,已知∠BAC=60° ,B=80° ,DE垂直平分ACBC于點D,AC于點E.

(1)求∠BAD的度數(shù);

(2)AB=10,BC=12,ABD的周長.

【答案】(1)20°;(2)22.

【解析】試題分析:(1)根據(jù)三角形內(nèi)角和定理求出C,根據(jù)線段垂直平分線的性質(zhì)得到DA=DC,求出DAC,計算即可;

(2)根據(jù)DA=DC,三角形的周長公式計算.

解:(1)∵∠BAC=60°,B=80°,

∴∠C=180°-BAC-B=180°-60°-80°=40°,

DE垂直平分AC,DA=DC.

∴∠DAC=C=40°,

∴∠BAD=60°-40°=20°.

(2)DE垂直平分AC,

AD=CD,

AB+AD+BD=AB+CD+BD=AB+BC=10+12=22,

∴△ABD的周長為22.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=-1,且過點(-3,0).下列說法:①abc0;②2a-b=0;③4a+2b+c0;④3a+c=0;則其中說法正確的是( ).

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長線上的一點,BE=BA,過EEFAB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),完成下列各題:

將函數(shù)關(guān)系式用配方法化為的形式,并寫出它的頂點坐標(biāo)、對稱軸.

求出它的圖象與坐標(biāo)軸的交點坐標(biāo).

在直角坐標(biāo)系中,畫出它的圖象

根據(jù)圖象說明:當(dāng)為何值時,;當(dāng)為何值時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10 在端午節(jié)前夕三位同學(xué)到某超市調(diào)研一種進價為2元的粽子的售銷情況,請跟據(jù)小麗提供的信息,解答小華和小明提出的問題

小麗:每個定價3元,每天能賣出500個,而且,這種粽子每上漲0.1元,其售銷量將減小10個

小華:照你所說,如果實現(xiàn)每天800元的售銷利潤,那該如何定價?莫忘了物價局規(guī)定售價不能超過進價的240%喲

小明:800元售銷利潤是不是最多的呢?如果不是,那該如何定價,才會使每天的利潤最大?.

(1小華的問題解答:

(2小明的問題解答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是菱形(四條邊都相等的平行四邊形).AB4,∠ABC60°,∠EAF的兩邊分別與邊BC,DC相交于點E,F,且∠EAF60°.

1)如圖1,當(dāng)點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關(guān)系為:   

2)如圖2,當(dāng)點E是線段CB上任意一點時(點E不與BC重合),求證:BECF;

3)求△AEF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵居民在枯水期(當(dāng)年11月至第二年5月)節(jié)約用電,規(guī)定7002300為用電高峰期,此期間用電電費y1(單位:元)與用電量x(單位:度)之間滿足的關(guān)系如圖所示;規(guī)定2300至第二天早上700為用電低谷期,此期間用電電費y2(單位:元)與用電量x(單位:元)之間滿足如表所示的一次函數(shù)關(guān)系.

1)求y2x的函數(shù)關(guān)系式;并直接寫出當(dāng)0x180x180時,y1x的函數(shù)關(guān)系式;

2)若市民王先生一家在12月份共用電350度,支付電費150元,求王先生一家在高峰期和低谷期各用電多少度.

低谷期用電量x

80

100

140

低谷期用電電費y2

20

25

35

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在等邊的邊上,,射線,垂足為點,點是射線上一動點,點是線段上一動點,當(dāng)的值最小時,,則的長為___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線ly=﹣x+2x軸于點A,交y軸于點B,直線l上的點P(m,n)在第一象限內(nèi),設(shè)AOP的面積是S

1)寫出Sm之間的函數(shù)表達式,并寫出m的取值范圍.

2)當(dāng)S3時,求點P的坐標(biāo).

3)若直線OP平分AOB的面積,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案