如圖是一個邊長為1的正方形組成的網(wǎng)絡,△ABC與△A1B1C1都是格點三角形(頂點在網(wǎng)格交點處),并且△ABC∽△A1B1C1,則△ABC與△A1B1C1的相似比是   
【答案】分析:先利用勾股定理求出AC,那么AC:A′C′即是相似比.
解答:解:由圖可知AC==,A1C1=1,
∴△ABC與△A1B1C1的相似比是:1.
點評:本題考查對相似三角形性質的理解,相似三角形邊長的比等于相似比.解答此題的關鍵是找出相似三角形的對應邊.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是一個邊長為1的正方形組成的網(wǎng)絡,△ABC與△A1B1C1都是格點三角形(頂點在網(wǎng)格交點處),并且△ABC∽△A1B1C1,則△ABC與△A1B1C1的相似比是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①是一個邊長為1的正方形,順次連接這個正方形的各邊中點得到圖②,再順次連接圖②中小正方形各邊中點得到圖③┉┉依此類推可以得到圖④,圖⑤等,則圖⑨最小的正方形的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

利用圖形來表示數(shù)量或數(shù)量關系,也可以利用數(shù)量或數(shù)量關系來描述圖形特征或圖形之間的關系,這種思想方法稱為數(shù)形結合.我們剛學過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結合的思想解決下列問題嗎?
(1)如圖,一個邊長為1的正方形,依次取正方形面積的
1
2
、
1
4
、
1
8
、…、
1
2n
,
根據(jù)圖示我們可以知道:
1
2
+
1
4
+
1
8
+
1
16
+…+
1
2n
=
 

精英家教網(wǎng)
利用上述公式計算:2-22-23-24-25-26-…-22008+22009=
 

(2)如圖,一個邊長為1的正方形,依次取剩余部分的
2
3
,根據(jù)圖示
精英家教網(wǎng)
計算:
2
3
+
2
9
+
2
27
+
…+
2
3n
=
 

(3)如圖是一個邊長為1的正方形,根據(jù)圖示
精英家教網(wǎng)
計算:
1
3
+
2
9
+
4
27
+
8
81
+
…+
2n-1
3n
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是一個邊長為a的正方形,用代數(shù)式表示圖中的陰影部分的面積,并求當a=2cm時,陰影部分的面積是多少?(π取3.14,結果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是一個邊長為1的正方形組成的網(wǎng)絡,△ABC與△A1B1C1都是格點三角形(頂點在網(wǎng)格交點處),并且△ABC∽△A1B1C1,則△ABC與△A1B1C1的相似比是( 。

查看答案和解析>>

同步練習冊答案