【題目】為滿足市場需求,某超市購進一種水果,每箱進價是40元.超市規(guī)定每箱售價不得少于45元,根據(jù)以往經驗發(fā)現(xiàn):當售價定為每箱45元時,每天可以賣出700箱.每箱售價每提高1元,每天要少賣出20箱.
(1)求出每天的銷量y(箱)與每箱售價x(元)之間的函數(shù)關系式,并直接寫出x的范圍;
(2)當每箱售價定為多少元時,每天的銷售利潤w(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關部分規(guī)定:每箱售價不得高于70元.如果超市想要每天獲得的利潤不低于5120元,請直接寫出售價x的范圍.
【答案】(1);(2)60元,最大利潤8000元;(3).
【解析】
根據(jù)“當售價定為每箱45元時,每天可以賣出700箱,每箱售價每提高1元,每天要少賣出20箱”即可得出每天的銷售量箱與每箱售價元之間的函數(shù)關系式;
根據(jù)每天的銷售利潤=(售價-進價)每天的銷售量,列出W與x的函數(shù)關系式,再根據(jù)二次函數(shù)的最值問題解答;
根據(jù)中所求得的w與x的函數(shù)關系式,根據(jù)這種糕點的每箱售價不得高于70元,且每天銷售水果的利潤不低于5120元,求出x的取值范圍.
解:由題意得,;
設每天的利潤為w元,
根據(jù)題意得,
當時,w有最大值為8000元;
令,則,
解得,
,
,
故售價x的范圍為:.
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,半徑為1的圓心角為60°的扇形紙片OAB在直線L上向右做無滑動的滾動.且滾動至扇形O′A′B′處,則頂點O所經過的路線總長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B為反比例函數(shù)y=在第一象限上的兩點,AC⊥y軸于點C,BD⊥x軸于點D,若B點的橫坐標是A點橫坐標的一半,且圖中陰影部分的面積為k﹣2,則k的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+m2+1(m為常數(shù)),當自變量x的值滿足﹣3≤x≤﹣1時,與其對應的函數(shù)值y的最小值為5,則m的值為( 。
A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+m2+1(m為常數(shù)),當自變量x的值滿足﹣3≤x≤﹣1時,與其對應的函數(shù)值y的最小值為5,則m的值為( 。
A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,某超市購進一種水果,每箱進價是40元.超市規(guī)定每箱售價不得少于45元,根據(jù)以往經驗發(fā)現(xiàn):當售價定為每箱45元時,每天可以賣出700箱.每箱售價每提高1元,每天要少賣出20箱.
(1)求出每天的銷量y(箱)與每箱售價x(元)之間的函數(shù)關系式,并直接寫出x的范圍;
(2)當每箱售價定為多少元時,每天的銷售利潤w(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關部分規(guī)定:每箱售價不得高于70元.如果超市想要每天獲得的利潤不低于5120元,請直接寫出售價x的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象分別交軸、軸于兩點,為的中點,軸于點,延長交反比例函數(shù)的圖象于點,且
(1)求的值;
(2)連結求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】線段AB、CD在平面直角坐標系中位置如圖所示,O為坐標原點.若線段AB上一點P的坐標為(a、b),則直線OP與線段CD的交點坐標為_______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com