先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2數(shù)學(xué)公式,β=-1-2數(shù)學(xué)公式
∴a2+3β2+4β=(-1+2數(shù)學(xué)公式2+3(-1-2數(shù)學(xué)公式2+4(-1-2數(shù)學(xué)公式
=9-4數(shù)學(xué)公式+3(9+4數(shù)學(xué)公式)-4-8數(shù)學(xué)公式=32.
當(dāng)a=-1-2數(shù)學(xué)公式,β=-1+2數(shù)學(xué)公式時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

解∵x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,
∴x1+x2=1,-x1-9=0,-x2-9=0,
=x1+9,=x2+9.
+7+3x2-66
=x1(x1+9)+7(x2+9)+3x2-66
=+9x1+10x2-3
=x1+9+9x1+10x2-3
=10(x1+x2)+6
=16.?
分析:首先利用根與系數(shù)的關(guān)系得到=x1+9,=x2+9,然后將原式變形為x1(x1+9)+7(x2+9)+3x2-66,整理后代入即可求值.
點(diǎn)評(píng):本題是一道閱讀理解題,考查一元二次方程根的不對(duì)稱式值的求解.解法1應(yīng)用一元二次方程根的定義,根與系數(shù)的關(guān)系和逐步降次的方法求解;解法2應(yīng)用求根公式法求出方程的解,再直接代入待求式求值;解法3通過構(gòu)造與待求式對(duì)稱的對(duì)偶式,結(jié)合根與系數(shù)的關(guān)系求解,求不對(duì)稱式的值源自于中學(xué)競賽內(nèi)容,知識(shí)點(diǎn)略高于中考要求,故題中提供了可借鑒的三種解法,不僅降低了問題難度,而且側(cè)重考查了自學(xué)能力,吻合了素質(zhì)教育對(duì)學(xué)生自學(xué)能力培養(yǎng)的要求.解答這類題,透徹理解閱讀材料,并靈活選用合理方法加以運(yùn)用是前提.第(2)問題選用解法1的方法較為簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列第(1)題的解答過程,再解第(2)題.
(1)已知實(shí)數(shù)a、b滿足a2=2-2a,b2=2-2b,且a≠b,求
a
b
+
b
a
的值.
解:由已知得:a2+2a-2=0,b2+2b-2=0,且a≠b,故a、b是方程:x2+2x-2=0的兩個(gè)不相等的實(shí)數(shù)根,由根與系數(shù)的關(guān)系得:a+b=-2,ab=-2.
a
b
+
b
a
=
(a+b)2-2ab
ab
=-4.
(2)已知p2-2p-5=0,5q2+2q-1=0,其中p、q為實(shí)數(shù),求p2+
1
q2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2001•黃岡)先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2
2
,β=-1-2
2

∴a2+3β2+4β=(-1+2
2
2+3(-1-2
2
2+4(-1-2
2

=9-4
2
+3(9+4
2
)-4-8
2
=32.
當(dāng)a=-1-2
2
,β=-1+2
2
時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下列第(1)題的解答過程,再解第(2)題.
(1)已知實(shí)數(shù)a、b滿足a2=2-2a,b2=2-2b,且a≠b,求
a
b
+
b
a
的值.
由已知得:a2+2a-2=0,b2+2b-2=0,且a≠b,故a、b是方程:x2+2x-2=0的兩個(gè)不相等的實(shí)數(shù)根,由根與系數(shù)的關(guān)系得:a+b=-2,ab=-2.
a
b
+
b
a
=
(a+b)2-2ab
ab
=4.
(2)已知p2-2p-5=0,5q2+2q-1=0,其中p、q為實(shí)數(shù),求p2+
1
q2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年湖北省黃岡市中考數(shù)學(xué)試卷(解析版) 題型:解答題

先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2,β=-1-2
∴a2+3β2+4β=(-1+22+3(-1-22+4(-1-2
=9-4+3(9+4)-4-8=32.
當(dāng)a=-1-2,β=-1+2時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

同步練習(xí)冊答案